76118 CR 113388

### DEVELOPMENT OF, COST ESTIMATING TECHNIQUES AND RELATIONSHIPS FOR UNMANNED SPACE EXPLORATION MISSIONS

**FRC R-870** 

66CASEFILE October 28, 1966

### Prepared for

California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove Drive

Under JPL Contract 951468

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100,

Prepared by

F. E. Hoffman G. W. S. Johnson L. H. Simonsen

PLANNING RESEARCH CORPORATION LOS ANGELES, CALIF. WASHINGTON, D.C.

### ERRATA

Page 14 Change (7) to (9)

Add footnote as follows: (9) is Spacecraft total program

cost = TPC minus launch vehicle cost minus mission

support and SFO costs as shown on pages 28 and 42.

Page 19
Under Section 5a, Nominal STPC, delete the second sentence reading: "The nominal program cost....."

Add the following after the last sentence: The nominal STPC, defined as the sum of 9 and the subtotal of Mission Support and Space Flight Operations cost shown on page 42, amounted to \$874.4 million.

Pages 28
and 42

Change M. O. Equipment to read: M. O. Training
Add the following footnote: To obtain 8, the increment
in systems integration cost, enter CER 12A with
cost 7 and obtain the increment in cost between
one spacecraft module and the applicable number of
spacecraft modules.

Page 40 Under Electrical Power place an asterisk after Fuel Cell\*
Add footnote below: \*Whereas batteries may be a better
engineering choice, fuel cells are shown to illustrate
the method.

Page 42 Add \$419.75 in 7 blank
Change sterilization cost from \$80.20 million to \$77.40
million and change the total to \$1,040.43 million

Page 45 Under <u>Utilization of Cost Categories</u> change "Fabricate and Assemble Flight Hardware" to Fabricate.

Assemble and Test Flight Hardware

Add footnote \*\* below: Design/Development is defined as Design, Fabricate and Assemble Test Hardware, and Ground Development Testing.

| Λ | ומ | ာင | n | ď | ix |  |
|---|----|----|---|---|----|--|
|   |    |    |   |   |    |  |

- Exhibit 2B Change cost (dollars per pound) to cost (dollars per pound of thrust)
- Exhibit 3B Change First Unit Cost Dollars/Pound of Thrust, 10<sup>3</sup>
  to First Unit Cost Dollars/Pound of Unit Weight
- Exhibit 8.6A Change Dollars per Watt/Hour and Output in Watt/Hours

  to Dollars per Watt Hour and Output in Watt Hours

  Delete learning curve = 100 %

  Change Design and Development cost = 0 to Design and

  Development cost = 100 x First Unit Cost

  Under Batteries, delete second and third sentences

  Under Mission Sensors, change IR spectometer to IR

  spectrometer

120121 12 66-664

## PROGRAM COST SUMMARY

| ITEM                                               | . 0                                 | . ②                                 | .3                        | Macan    | 4                          | <u> </u>                   | <b>③</b>  |
|----------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|----------|----------------------------|----------------------------|-----------|
|                                                    | DESIGN/DEVELOPMENT                  | COST OF<br>TEST ARTICLES            | D/D PLUS<br>TEST ARTICLES | INTEGR   | RATION                     | COST OF                    | TOTAL     |
| Spacecraft Module                                  |                                     |                                     | 1) + (2)                  | 3 €      | CER 12A                    |                            | 3 + 9 + 9 |
|                                                    | 3                                   |                                     |                           |          |                            |                            |           |
|                                                    |                                     |                                     |                           |          |                            |                            |           |
| /c Systems Integration - ncrement Ref: 7 & CER 12A |                                     |                                     |                           |          | •                          | 3                          |           |
|                                                    |                                     |                                     |                           | s/c      | TPC                        | 9                          |           |
| ION SUPPORT AND SPACE FLT OPNS                     | DESC                                | RIPTION / INPUT                     |                           | REF CER  | 0                          | PERATION                   | COST      |
| Program Management SETD Phase A                    | Mgt Mode/Tec<br>Adv Studies         | •                                   |                           | 15A      |                            | 05                         | •<br>•    |
| Phase B<br>Phase C                                 | Conceptual De<br>Project Definition | sign                                | Critical Haw. Dev         | -        | ۵.                         | 01                         |           |
| Adv. Development<br>Sterilization                  |                                     | ber of High Risk                    |                           | 13       |                            | 05 (1+1Ng)<br>/100 (1+1Ng) |           |
| M.P. Equipment M.O. Training                       | Mission Peculia<br>Mission Operat   | ir Equipment At<br>ions Training; T | • •                       | 14       | 三。<br>0.60x10 <sup>6</sup> |                            |           |
| Space Flt Opns Post Flt Analysis                   | Mission Time<br>Mission Time        | •                                   | •                         | -        | Ž.                         | 10 <sup>6</sup> (T+3)      |           |
| Mgt Implen Mode<br>Schedule/Program Chg            | Mgt Implement                       | ation Mode:                         |                           | 15<br>16 |                            | <2 9 /100 9                |           |
| Launch Vehicle                                     |                                     |                                     |                           |          |                            | .100                       |           |

1965 DOLLARS

RE-ORDER No. 66-664

PRC R-870
ii

### TABLE OF CONTENTS

|      |       |      |                                                           | Page |
|------|-------|------|-----------------------------------------------------------|------|
| I.   | INTR  | ODU  | CTION/SUMMARY                                             | 1    |
| ц.   | TECH  | INIC | AL DISCUSSION                                             | 3    |
|      | Α.    | Gen  | eral Approach and Data Sources                            |      |
|      | В.    | Cos  | t Categories and Relationships                            | 3    |
|      | C.    | Pre  | liminary Cost Model                                       | 6    |
|      | D.    | Fina | al Cost Model                                             | 6    |
|      |       | 1.   | Launch Vehicle                                            | 6    |
|      |       | 2.   | Spacecraft                                                | 8    |
|      |       | 3.   | Mission Support and Space Flight Operations               | 12   |
|      | E.    | Den  | nonstration of the Cost Model                             | 22   |
|      | F.    | Sco  | pe and Accuracy of the Cost Model                         | 44   |
|      | G.    | Rec  | ommendations for Future Cost Accounting                   | 44   |
| APPE | ENDIX |      | STANDARDIZED COST FORMS AND COST ESTIMATING RELATIONSHIPS | 46   |

### I. INTRODUCTION/SUMMARY

This document is the final report submitted under JPL Contract No. 951468. The study performed under this contract can best be described by listing the major tasks:

- 1. Develop a cost estimating technique for unmanned space exploration missions based on applicable methodology and pertinent data from the Space Planners Guide, United States Air Force, Air Force Systems Command, 1 July 1965.
- 2. Describe the cost categories and estimating relationships developed and their relationship to the various phases of a space project.
- 3. Provide a preliminary cost model based on initial efforts.
- 4. Demonstrate the use of the estimating technique by application to two mission examples—one past mission, Mariner IV, and one future mission, a combined Mars orbiting and landing mission.
- 5. Perform a sensitivity analysis to determine the importance of various cost categories and parameters in predicting project costs:
  - a. The cost categories shall include, but not necessarily be limited to, such items as design, development/operations, and various subsystems.
  - b. The parameters shall include, but not necessarily be limited to, such items as periodic launch schedule and program changes.
- 6. Refine the previously developed cost estimating technique as indicated by the sensitivity analysis.
- 7. Demonstrate the application of the refined cost estimating technique by repeating the mission cost examples prepared under item 4 above.
- 8. Prepare a final report showing:
  - a. A clear definition and description of all costing categories, relationships, and techniques developed.

- b. Documentation to substantiate engineering judgments and identify data sources.
- c. Results of the mission cost applications.
- d. A discussion of the scope and accuracy of the cost estimating techniques developed.

This final report has been prepared to satisfy two different demands. One part of this report is devoted to describing the development of the cost model and to discussing the scope and accuracy of the techniques and relationships. Other parts of this report are directed toward space system costers; consequently, blank standardized forms are provided in the Appendix to assist the user in obtaining rapid results for launch vehicle procurement costs and unmanned spacecraft design, development, fabrication, ground testing, and space flight operations costs.

### IL TECHNICAL DISCUSSION

### A. General Approach and Data Sources

In developing a cost model for unmanned space exploration missions, the quantity, quality, and the cost categories used in the available data must be considered. There is no immediate advantage in developing a cost model based on an elaborate framework of cost categories not used in the past, since this approach can only lead to a maximum of judgments and possible errors in distributing costs to new categories.

The cost model shown in this report is based on minimizing the number of engineering judgments required to distribute costs to the categories chosen. The principal data sources are shown in Table I. An inspection of this table shows that the data sources for this report are a combination of past studies, Planning Research Corporation's Data Bank, recent industrial contacts with nine major launch vehicle and spacecraft contractors, and an analysis of NASA and JPL cost data on five past spacecraft systems.

### B. Cost Categories and Relationships

Initially in this study effort, the cost categories that appeared significant were: launch vehicles, spacecraft, and support systems. These categories were later expanded to include:

- o Design
- o Manufacture hardware (or purchase)
- o Facilities (build or inherit)
- Ground development testing
- o Space flight operations

These categories were then to be supported by appropriate detailed cost-estimating relationships (CER's). Later in the study it became apparent that insufficient data were available to separate design and ground development testing into distinct cost categories, and launch vehicle development, as well as facilities, were recognized to be beyond the scope of this study.

### TABLE 1 - DATA SOURCES

- Launch Vehcile Components Cost Study
  Lockheed Missiles and Space Company, Technical Report, Volume II, LMSC-895429,
  June 30, 1965
- 2. Launch Vehicle Systems Cost Mcdel
  Lockheed California Company, Technical Report, LR 17825, June 15, 1964
- 3. Spacecraft Cost Data Bank Planning Research Corporation
- 4. Space Planners Guide USAF, AF Systems Command, July 1, 1965
- 5. Synopsis of GSFC Accomplishments on Development of Cost Estimating Relationships......
  for Unmanned Satellite Programs
  W.A. Mecca, Jr., Goddard Space Flight Center, March 1966
- 6. Results of Industrial Contacts with Nine Major Launch Vehicle and Spacecraft Contractors
  PRC Data File
- 7. Analysis of NASA and JPL Cost Data on Ranger, Lunar Orbiter, Syncom, Surveyor, Orbiting Astronomical Observatory Spacecraft PRC Data File

This realization posed no particular problem since launch vehicles are usually inherited development, and facilities are either inherited from other programs or are carried in budgets separate from a particular spacecraft system.

In view of these considerations, the following general framework for the hand cost model was adopted:

1. Launch Vehicle (Procurement)

Subsystems -----CER's

Activities such as: ------ CER's

Transportation

Launch Services

Acceptance Testing

Design/Development and First Unit Costs

2. Spacecraft (Design/Development and Fabrication)

Subsystems -----CER's

Activities such as:

Systems Integration

Design/Development and First Unit Costs

3. Mission Support and Space Flight Operation

Program Management

Systems Engineering and Technical Direction (SETD)

Sterilization of Entry Capsule

Mission Peculiar Equipment at Space Flight Operations Facility (SFOF) and Tracking Sites

DSN (Inherited)

Space Flight Operations

Post Flight Analysis

Management Implementation Modes:

Laboratory Management

Systems Management

Advanced Development

Phases A, B, and C

Schedule/Program Changes

### C. Preliminary Cost Model

A preliminary cost model was prepared early in the study. This approach not only provided an early output for spacecraft systems costing, but also served to emphasize the problem areas in developing an unmanned spacecraft cost model.

One difficulty that immediately became apparent was the defining of subsystems and distribution of the weights to appropriate cost categories. This problem arises since different scientific and engineering organizations use different names for subsystem hardware development tasks. A simple, standardized weight distribution form solved this problem and serves to display any judgments required. An example is shown in Table IA.

Other problems were apparent in the preliminary cost model and were overcome largely by further definition of the subsystems or by addition, deletion, splitting, or combining subsystem categories. Costs for transportation, acceptance testing, and propellants were retained for launch vehicle but dropped for spacecraft because of their minuscule effect.

### D. Final Cost Model

The final cost model is now presented. The individual items are described in the following subsections: launch vehicle, spacecraft, mission support, space flight operations, and management implementation modes and management alternatives in schedule/program changes.

Subsection E contains a demonstration of the final cost mode! using one past and one future space mission. The detailed CER's are shown in this section.

### 1. Launch Vehicle

The launch vehicle cost model is a building block approach for estimating the cost of any combination of stages, engines, and either LOX/RP-1 or LOX/H<sub>2</sub> fuel.

Development of Cost Estimating Techniques and Relationships for Unmanned Space Exploration Missions, Planning Research Corporation, Report D-1206, April 29, 1966.

The launch vehicles used in planetary exploration have been systems that were operational—having been developed for other programs. However, they were easily adaptable to planetary flights. Future planetary programs are expected to also use launch vehicles that are available rather than developing special launch vehicles for this specific program. Consequently, the launch vehicle cost model is based on procurement costs of vehicle stages and engines that are in production. Large solid rockets are not considered.

The cost elements for each stage are identified separately in the model. Thus, in any stage, the three hardware items, structure, propulsion, and guidance and control, are costed first, followed by transportation, acceptance tests, launch services, and propellants. Two of these elements, guidance and control and launch services, are not costs which are applicable to each stage separately; they are a single cost for each entire launch vehicle. However, the guidance and control is usually in the top stage, and in the subsequent demonstration, it has been included as a part of the top stage. To simplify the cost model, the launch services were also included in the upper stage.

A choice of learning curves is also provided since the learning for various hardware items varies significantly. After selecting an appropriate learning curve and the production quantity, a learning factor is obtained from Exhibit LV-8. This learning factor, times the first unit cost, provides the cost of the item under consideration. If more than one of the items is used per stage, then it is necessary to make one more calculation, as shown in Table IIA. For planning purposes, the following learning curves may be used:

Launch vehicle stages 90 percent learning curve
Liquid engines 90 percent learning curve
Guidance and control 90 percent learning curve

Cost estimating relationships (CER's) were developed for each of the elements appearing in the launch vehicle model. The Space Planners Guide was used as a departure point since it provided reasonable initial answers.

The Space Planners Guide, USAF Report dated 1 July 1965.

However, this information was updated with recent data from manufacturers and various NASA reports. Discussions with many NASA officials also provided information and an insight into judging the accuracy of the reported data.

In some cases an entirely new CER was developed rather than using the parameters depicted in past studies. This approach was used when the new parameters appeared to provide a more easily understood relationship. The CER for structures, Exhibit LV-1, is an example where pounds of propellant was previously used as the quantifying parameter and cost in dollars as the resultant. It is believed that dollars-perpound of structure provides a more meaningful comparison of one stage structure with another than total cost in millions of dollars.

### 2. Spacecraft

Spacecraft costs have been categorized largely by the subsystems such as structure, propulsion, navigation and guidance, stabilization and control, communication, and others. In addition, the costs are further categorized into Design/Development and first unit costs for hardware fabrication of test and flight articles. In this report, the cost of test and flight hardware is assumed to be at first unit cost under ten spacecraft. For greater numbers of spacecraft the learning curve factors can be used.

The cost of aerospace ground equipment (AGE), tooling, and special test equipment are applied against Design/Development support only. In a production program involving ten or more identical spacecraft, additional AGE, tooling and test equipment would be required.

Systems integration costs as shown in Table III are required for subsystem integration and one interface. For multiple module space-craft the incremental cost of integration between modules is shown on the summary sheet in Table IV and Exhibit 12A.

Environmental control systems costs (ECS) are usually large in manned spacecraft; however, in the unmanned spacecraft analyzed, the

ECS was largely thermal control and in most cases louvres or simple structure. In view of this recurring situation ECS was deleted as a cost category and the items were usually costed as structure.

### Entry Capsule Sterilization

Sterilization of planetary spacecraft is expected to cause a major change in assembly and test techniques. Clean rooms and remote handling procedures are anticipated as minimum requirements.

This will result in a large increase in man-hours for assembly and test.

This increase is expected to be applicable only to that portion of the spacecraft that must be sterilized. The actual increase in program cost is expected to be a direct function of the present man-hour requirement for assembly and test.

The following formula has been developed to determine the percentage increase in total spacecraft program cost when a portion or all of the spacecraft is assembled and tested under sterilized conditions.

$$S = \frac{1}{4} k \frac{W_c}{W_s} (f-1)(100) \frac{N}{4}$$

where

S = percentage increase in total spacecraft program cost due to sterilization

k = fraction of total spacecraft program cost for personnel,
 i.e., (k + material fraction and subcontract fraction) = 1

W = weight sterilized

W = total weight of spacecraft less expendables

f = factor by which man-hours must be increased to perform sterilization

N = number flight articles sterilized

The constant 1/4 is the ratio of the assembly and test cost without sterilization, to the total spacecraft personnel cost, i.e., assembly and test account for approximately 25 percent of the total spacecraft personnel cost.

The constant 4 is the average number of flight articles in the programs from which this formula was derived.

Inspection of two past programs shows that k = 0.40, and Exhibit 13, based on the above relationship, shows the sensitivity of total spacecraft program cost to the factor by which assembly and test manhours must be increased due to sterilization. The exhibit also provides this sensitivity for various ratios of the sterilized portion to the total spacecraft weight.

For example, if the weight of the capsule on the Mars Advanced Orbiter/Limited Lander that requires sterilization is 0.25 of the total spacecraft weight, and if a man-hour factor of 5 is selected as the expected increase for sterilization, then the spacecraft program cost will be increased by 10 percent. A manpower amplification factor of 5.0 is recommended until current research in this area is completed.



EXHIBIT 13 - INCREASE IN THE SPACECRAFT TPC DUE TO STERILIZATION

### 3. Mission Support and Space Flight Operations

Whereas previous sections of this report were concerned with launch vehicle procurement and spacecraft design/development and fabrication costs, this section is devoted to costs for mission support and space flight operations.

The cost categories considered here are the following:

Program Management

Systems Engineering and Technical Direction (SETD)

Phases A, B, and C

Advance Development

Entry Capsule Sterilization

Facilities (General)

Mission Peculiar Equipment (MPE)

Mission Operations Training (MOT)

Space Flight Operations

Post Flight Analysis

The cost for program management is largely attributable to salaries and administrative support for the spacecraft system program office; whereas the cost of systems engineering and technical direction (SETD) is attributable to salaries, administrative support, and studies to provide initial systems engineering and technical advice to the Spacecraft System Program Office.

Phases A. B. and C costs refer to system procurement phases:

Phase A -- Advanced Studies.

Phase B--Conceptual Design.

Phase C--Project Definition, System Design, and Critical Hardware Development.

Advance Development costs refer to starting development of long lead time items, initiating additional research and development in new or unestablished technologies, such as sterilization procedures or entry capsule heat shield materials.

Sterilization costs refer to the increase in total spacecraft program cost due to increased assembly and test manpower to sterilize the entry capsule. Increases in the cost of facilities required by sterilization procedures are not considered.

Sterilization costs are shown in Section D. (2) and CER 13.

Since general facilities such as tracking sites for the Deep Space
Net (DSN) are usually carried in other budgets or are at least not chargeable to a particular program, only mission peculiar equipment located
at Space Flight Operations Facility (SFOF) and DSN has been considered.
A CER for this equipment is shown in Exhibit 14.

Mission Operations Training costs refer to the training of personnel for mission operations in SFOF including the necessary software. Space flight operations costs as shown are solely cognizant scientific and engineering personnel on duty at SFOF to ensure adequate and timely command decisions regarding the spacecraft and mission sensors (or experiments) during flight operations. Similarly, post flight analysis cost is attributable to scientific and engineering personnel for a time span.

Tables IV, IVA, X, and XA illustrate the mission support and spaceflight operations costs as well as the associated time phasing.

M.P. Equipment Cost, Dollars, 106

16

### 4. Management Implementation Modes

The impact of management implementation modes on spacecraft costing can be considered by examining the two broad choices available:

- a. An in-house laboratory development where only materials and a few subsystems are purchased and all final assembly and development testing is in-house. The Ranger Block III represents an example of this laboratory management mode.
- b. A prime systems contractor is assigned responsibility for overall spacecraft design, fabrication, and development testing. The Spacecraft Systems Program Office would then perform the functions of technical and administrative direction. The Surveyor project is an example of this systems management mode.

In general, an in-house laboratory mode is most desirable when the root technology is not fully developed and small quantities of space-craft and numbers of flights are involved. This mode is also more compatible with small spacecraft (1,000 pounds dry weight). In contrast to laboratory development, systems management is usually considered when the project is large in resources required and the root technology is well established or easily extended in a small advanced development phase carried along as concurrent development.

In order to quantify and compare these two management implementation modes, Exhibit 15 has been prepared, in which the nominal total spacecraft program cost is based on an in-house laboratory development. The nominal total program cost is based on the following premises:

- a. Laboratory management and development
- b. Professional manpower cost (\$30,000 per-year)
- c. Nonprofessional manpower cost (\$20,000 per year)
- d. The professional manpower consists of 45 percent of the total project manpower. This is an average for the entire project since the earlier study phases usually have a higher percentage.
- e. Only 40 percent of the entire program cost is attributable to personnel cost. The balance is used to purchase material and subsystems.



From Exhibit 15, it can be seen that the cost of the first mode, laboratory management, can be adjusted by changing the percentage of professionals assigned to the project. In this case, the effect on the total project cost can be determined by proceeding along the line passing through the nominal-total-program cost. If the percentage of professionals were to be held at 45, but the nonprofessionals were to be paid only \$15,000 per year instead of \$20,000, then the effect on the total program cost would be determined by proceeding vertically downward through the nominal-total-program cost. The result would be a saving of 4.5 percent.

If the second mode, systems management, were chosen, it is only necessary to know the professional manpower as a percentage of the total, and the annual average personnel labor rate for professional and nonprofessional manpower. Exhibit 15 is based on an annual labor rate of \$30,000 for professionals. If this figure were to vary by more than \$5,000, a new exhibit should be prepared.

In the foregoing comparison of the two basic management modes, it was assumed that the same tooling and special test equipment investment would be required in a laboratory development or a systems management program.

An inspection of Exhibit 15 shows that under systems management, a percentage decrease of 7 percent in total spacecraft program cost can be realized if the professional manpower is 35 percent (a common ratio in the aerospace industry) of the total manpower, and the annual labor rates are \$30,000 and \$15,000 for professionals and nonprofessionals, respectively. Obviously these gains can be overshadowed by inefficiency in program control and unexpected difficulties in technical development requiring additional advanced development costs.

The 7-percent decrease in total spacecraft program cost shown in the foregoing example is partially offset by an increase in SETD expense in-house. This expense is a function of the number of personnel assigned to this activity. Exhibit 15A is a plot whereby the cost of this management activity is shown as a function of the ratio of the number of technical in-house personnel to the number of technical personnel assigned to the project by the systems subcontractor.

PRC R-870



EXHIBIT 15A - SETD COST

### 5. Schedule/Program Changes

This subsection presents the variations in spacecraft total program cost (STPC) for various program management alternatives, the effect on STPC for parallel development in high risk areas, and a rescheduling of the launch and accelerated development in the high risk areas. The nominal STPC for the Mars Advanced Orbiter/Limited Lander mission was used as the baseline estimate to derive the effect of the program management alternatives on STPC.

### a. Nominal STPC

For the Mars advanced mission, the design and development phase was four years; however, the results herein can be applied to other Phase D schedules. The nominal program cost as described previously amounted to \$874.4 million. By an analysis similar to that presented in PRC Report D-1302, increases in STPC were developed for the modified cases as described below.

### b. Parallel Development

Due to the launch date constraint and a 24-month mandatory delay, a form of insurance is available by having parallel development in selective high risk areas. No attempt was made in this study to quantify risk, but rather, based on engineering judgment, high risk items were chosen to be developed in parallel. The cost of the high risk items was coubled to account for development of alternative designs.

The spacecraft high risk items chosen were the guidance and control and the electrical power (RTG) subsystems. An alternate entry capsule was chosen to be developed in parallel. Only one capsule would be sterilized. An alternate throttleable engine design was chosen for parallel development for the propulsion module. The spacecraft support costs were increased by the ratio of the nonspacecraft support parallel development cost to the nonspacecraft support nominal cost case. The parallel development STPC was \$960.8 million.

### c. Periodic Launch Rescheduled

The nominal case with reschedule or postponement of the launch at some point was now examined. The worst point to reschedule

PRC R-870

will in general be at that point where the total spending rate is the highest. With any percentage cutback the rate of spending to maintain the remaining manpower and material will be a maximum. We have chosen the midpoint of Phase D as the reschedule decision point (worst case). The highest program cost with a reschedule of the launch date will occur with no cutback of manpower and material. A minimum expected cost would probably be something like a cutback of 2/3 with a linear buildup to the nominal rate a year before launch. One can foresee little variation in the cost for the last year before launch. The maximum cost with reschedule results in a cost of \$1,151 million, while the minimum cost is \$972.3 million, compared to a nominal cost of \$874.4 million.

### d. Accelerated Development

A third case was studied, where initially, the nominal program is chosen, and at a particular time (due to unforeseen difficulties) the program spending is accelerated in the high risk areas in order to meet the launch date. The high risk areas chosen were identical to the parallel development case. In the case presenting the high risk area, spending was tripled at the beginning of the second year of Phase D. Both the time for accelerated development and the increase in cost were somewhat arbitrarily chosen; however, it lends insight into the magnification of the STPC when rapid development is required. The accelerated costs also include increased space vehicle support costs. The total accelerated cost was \$1,050 million.

Thus, a CER for program management alternatives, with regard to major schedule/program changes, has been developed. The results are presented in Exhibit 16.

# M-11-11 Ma 66-664

### **EXHIBIT 16 - PROGRAM MANAGEMENT ALTERNATIVES**

|    | Schedule/Program Changes                                                                                                    | % Increase in STPC |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------------|
| l. | Nominal Program                                                                                                             | 0                  |
| 2. | Parallel Development (of alternate designs in high risks sub-systems from the start of Phase D)                             | 22.0               |
| 3. | Accelerated Development (crash development of three designs in each high risk sub-system from the quarter-point of Phase D) | 37.5               |
| 4. | Periodic Launch Rescheduled (to next launch opportunity at the mid-point of Phase D)                                        |                    |
|    | A. no cut-back in level of effort                                                                                           | 55.0               |
| •  | B. a two-thirds funding cut-back with gradual build-up reaching nominal spending levels one year prior to launch            | 24.0               |

PRC R-870

### E. Demonstration of the Cost Model

Two examples are used to demonstrate the cost model. The space missions chosen are Mariner IV, an unmanned Mars fly-by in 1964 and an unmanned Mars Advanced Orbiter/Limited Lander in 1973-1975. The description of the future mission and associated spacecraft was obtained from Jet Propulsion Laboratory personnel and is used only to illustrate a typical multi-module spacecraft. No preference to this design candidate is implied or denied by its inclusion here.

PRC R-870

### 1. Mariner IV--Mars Fly-By in 1964

### Distribution of Mariner IV Weights to Cost Categories

In order to display the weight distribution of the Mariner IV spacecraft to the appropriate cost categories, Table 1A has been prepared. In general the method of distribution is obvious; however, some remarks will be made to further clarify the table shown.

### Structure

The principal items here are the primary octagonal structure, solar panels less the solar cells, six electronic assembly chassis, science platform structure, actuators, covers, superstructure, thermal control louvres and shields.

### Electrical Power

The electrical power system is a paddle mounted solar cell system and the principal weight items are solar cells, battery, conversion and regulation electronics.

### Stabilization and Control

The subsystem is primarily a cold gas attitude control system and the principal weight items are electronics, attitude sensors, nitrogen gas, solar pressure-vane control assemblies, and two attitude-control gas assemblies.

### Navigation and Guidance

The guidance system is a radio command system supplemented by the attitude control system and sensors discussed above. The principal weight items are command electronics, central computer and sequencer (CC&S) and other electronics.

### Communications

Under communications the principal weight items are RF transmitter and receiver and antennas.

Throughout Table IA the weight of the cabling has been distributed to the using subsystems.

### TABLE LA - DISTRIBUTION OF MARINER IV WEIGHTS TO COST CATEGORIES

| Cost Category                      |                                   |                         |                |                    |                           |           |                         |                        |
|------------------------------------|-----------------------------------|-------------------------|----------------|--------------------|---------------------------|-----------|-------------------------|------------------------|
| JPL<br>Weights                     | Experiments or<br>Mission Sensors | Navigation and Guidance | Communications | Data<br>Management | Stabilization and Control | Structure | Electrical<br>Power     | Propulsion             |
| Structure (7.8.44)                 |                                   |                         | . ·            |                    |                           | 78.44     |                         |                        |
| Antenna (7.43)                     |                                   |                         | 7.43           | -                  |                           |           |                         |                        |
| Radio (34.40)                      |                                   |                         | 34.40          |                    |                           |           |                         |                        |
| Command (10.12)                    |                                   | 10.12                   |                |                    |                           |           |                         |                        |
| Power (70.95)                      |                                   |                         |                |                    |                           |           | 70.95 lbs.<br>(0.34 KW) |                        |
| Solar Panels (79.02)               |                                   |                         |                |                    |                           | 44.62     | 34.40                   |                        |
| CC 2S (11.38)                      |                                   | 11.38                   |                |                    |                           |           |                         | • •                    |
| Data Encoder (22.43)               |                                   |                         |                | 22.43              | ·                         |           |                         |                        |
| Data Storage (16.89)               |                                   |                         |                | 16.89              |                           |           | _                       |                        |
| Guidance and<br>Control (63.29)    |                                   | 18.86                   |                |                    | 45.43                     |           |                         |                        |
| Actuators and Pyrotechnics (12.21) |                                   |                         |                |                    |                           | 12.21     |                         |                        |
| Cabling (45.69)                    | 7.62                              | 7.62                    | 7.62           | 7.62               | 7.62                      | 7.62      |                         |                        |
| Propulsion (45.55)                 |                                   |                         |                |                    |                           | 3.80      |                         | 43.75<br>(T = 50 lbs.) |
| Thermal Control (15.53)            |                                   |                         |                |                    |                           | 15.53     |                         |                        |
| Science (59.41)                    | 59.41                             | ·                       |                |                    |                           |           |                         |                        |
| Total (574.74)                     | 67.03                             | 47.98                   | 49.45          | 46.94              | 53.05                     | 162.22    |                         |                        |

# LAUNCH VEHICLE COST

|                                 | QUANTIFYING                     | PARAMETER<br>INPUT           | REF.        | FIRST UNIT<br>COST<br>(DOLLARS/LBS) | STRUCTURE | FIRST UNIT<br>COST<br>(OCLLARS)                                                                                 | LEARNING | ITEM    | REF          | LEARNING<br>FACTOR | COST OF<br>ITEM<br>(DOLLARS) | NUMBER<br>ITEMS | COST<br>(DOLLARS)           |
|---------------------------------|---------------------------------|------------------------------|-------------|-------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------|---------|--------------|--------------------|------------------------------|-----------------|-----------------------------|
| STAGE                           | PARAMETER                       | TAPO I                       | -           |                                     |           |                                                                                                                 |          |         | Ex.          | 0.445              | 6,700,000                    | 1               | 6,700,000                   |
| Structure                       | Stage Propel-<br>lant Wt. (ibs) | 247,500                      | Ex<br>LV-1  | 630                                 | 24,200    | (5,000,000                                                                                                      | 90 1     | 200     | LV-8         | 0.445              | 0,700,000                    |                 |                             |
| Propulsion                      | Engine Thrust (165)             | 154,500/60,000               | Ex<br>LV-2  |                                     |           | 490,000/                                                                                                        | 90%      | 450/250 | Ex.          | 0.409/0.420        | 196,000/                     | 2/1             | 510,000                     |
| Guidance and<br>Control         | Weight (165)                    | Not applicable to this stage | Ex.<br>LV-3 |                                     |           |                                                                                                                 |          |         | Ex<br>LV-8   |                    |                              |                 |                             |
| Transportation Air Ship or Rail | Weight (165)                    | 27,500                       | Ex.<br>LV-4 |                                     |           |                                                                                                                 |          |         |              |                    |                              |                 | 3,400                       |
| Acceptance<br>Test              | Stage Gross<br>Weight (165)     | 275,000                      | Ex.<br>LV-5 |                                     |           |                                                                                                                 |          |         | galar estado |                    |                              |                 | 210,000                     |
| Launch<br>Services              | L.V. Gross<br>Weight (165)      | 376,000                      | Ex.<br>LV-6 |                                     |           |                                                                                                                 |          |         |              |                    |                              |                 | Not applica<br>to this stag |
| Propellants                     | Propellant<br>Type              | LOX-RP-1                     | Ex.<br>LV-7 | - 174                               |           | dipanala vida da para di Santa da Santa |          |         | *ESMASSIFF   |                    | 0.025/1b                     | 247,500         | 6,170                       |

|       | TOTAL | 7,429,570 |
|-------|-------|-----------|
|       |       |           |
|       |       |           |
| 0. 4: |       |           |

Other Pertinent Data

Engine Type Liquid

Engine Dry Weight --(ea) (lbs)

Stage Thrust (lbs) [369,000]

۲

TABLE IIB

# LAUNCH VEHICLE COST

|          | COST<br>(DOLLARS)                        | 2,250,000                       | 77,000                 | 230,000                 | 200                       | 71,000                      | 1,200,000                  | 6,120              | 3,834,320       |
|----------|------------------------------------------|---------------------------------|------------------------|-------------------------|---------------------------|-----------------------------|----------------------------|--------------------|-----------------|
|          | NUMBER<br>ITEMS (                        |                                 |                        |                         |                           |                             |                            | 15,300             | TOTAL 3,834,320 |
|          | COST OF<br>ITEM<br>(DOLLARS)             | 2,250,000                       | 77,000                 | 230,000                 |                           |                             |                            | 0.40/1b            |                 |
| <u> </u> | REF LEARNING                             | 0.46                            | 0.45                   | 1.00                    |                           |                             |                            |                    |                 |
|          | 8 0<br>m m<br>T 8                        | Ε.<br>-%-<br>-%-                | ~                      | Ex<br>LV-8              | 1                         | 1                           | 1                          |                    |                 |
|          | ITEM<br>COSTED                           | 051                             | 175                    |                         |                           |                             |                            |                    |                 |
|          | LEARNING<br>CURVE                        | 30%                             | 206                    | 100%                    |                           |                             |                            |                    |                 |
|          | FIRST UNIT<br>COST<br>(DOLLARS)          | 4,900,000                       | 170,000                | 230,000                 |                           |                             |                            |                    |                 |
|          | STRUCTURE<br>(WT IN LBS)                 | 1,680                           |                        |                         |                           |                             |                            |                    |                 |
|          | FIRST UNIT<br>COST<br>(DOLLARS/LBS)      | 2,900                           |                        | 4,600                   |                           |                             |                            |                    |                 |
|          | 8.0<br>E.R.                              | Ex                              | Ex<br>LV-2             | Ex.                     | £x.<br>LV-4               | Ex.<br>LV-5                 | Ex.<br>LV-6                | Ex. LV-7           |                 |
|          | PARAMETER<br>INPUT                       | 15,300                          | 16,000                 | 50                      | 1,700                     | 17,000                      | 376,000+17,000             | RFNA/UDMH          |                 |
|          | QUANTIFYING PARAMETER<br>PARAMETER INPUT | Stage Propel-<br>lant Wt. (155) | Engine<br>Thrust (105) | Weight (165)            | Stage Dry<br>Weight (Ibs) | Stage Gross<br>Weight (165) | L.V. Gross<br>Weight (165) | Propellant<br>Type |                 |
|          | Agena D<br>STAGE 2                       | Structure                       | Propulsion             | Guidance and<br>Control | Transportation Air        | Acceptance<br>Test          | Launch<br>Services         | Propellants        |                 |

L.V. Total 11,263,890 x 1

1st Stage 7,429,570

Engine Dry Weight [--

Other Pertinent Data
Engine Type

[Liquid

Stage Thrust (155) [ 16,000

RE-ORDER NO. 66-66

SPACECRAFT COST

PROGRAM Mariner IV MODULE

| Module               |             |                         |           |                   |                     | ;<br>!                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | FOST OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                               | COST OF                                                                                                       | TOTAL        |
|----------------------|-------------|-------------------------|-----------|-------------------|---------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|
| 15                   |             | QUANTIFYING             | PARAMETER | я л<br>п п<br>п о | DESIGN/<br>DEV'L'PT | 87 C<br>80 C<br>87 C                      | PARAMETER<br>OUTPUT<br>DOLLARS/               | UNIT<br>COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEST<br>ARTICLES      | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FLIGHT                                                                                                          | FLIGHT                                                                                                        | HROW<br>COST |
| IES                  | DESCRIPTION | PARMETEK                |           | 2                 | 1 05                | 6                                         | 4.200\$/1b                                    | 0.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7                    | 2.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                               | 2.043                                                                                                         | 4.767        |
| Structure            |             | Weight (165)            | 162.2     | 5                 | CO.,                |                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               | e da skalis  |
| Propulsion<br>Module |             | Weignt (165)            | 1         | 1.1A              | •                   | <u>.</u>                                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               |              |
| Entry                |             | Weight (10s)            | •         | A.                | •                   | 5                                         |                                               | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               |              |
| Structure            | •           | (100)                   | 0 05      | 2A                | 1.78                | 28                                        | 370\$/1b                                      | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                               | 090.0                                                                                                         | 0.140        |
| Propulsion           | الوالا      |                         |           | 48                |                     | 38                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                               |                                                                                                               |              |
| Retro-Propulsion     | 901 id      | Weight (155)            | •         | SA                |                     | )                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | ٠                                                                                                             |              |
| Navigation<br>and    |             | Weight (105)            | 48.0      | 44                | 2.70                | 4<br>Ø                                    | 5,300\$/1b                                    | 0.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                     | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                               | 0.762                                                                                                         | 1.642        |
| Stabilization        |             | Weight (16s)            | 53.0      | 5A                | 2.90                | 58                                        | 5,000\$/16                                    | 0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                    | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | м                                                                                                               | 0.798                                                                                                         | 1.862        |
| and Control          |             |                         |           | 4                 | ر<br>ج              | 66                                        | 6,000\$/16                                    | 0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                    | 1.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                               | 0.888                                                                                                         | 2.072        |
| Communications       |             | Weight (165)            | 49.0      | ¥ 0               | ,                   | )                                         |                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 4 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~                                                                                                               | 3,366                                                                                                         | 7.854        |
| Data                 |             | Weight (165)            | 49.9      | ¥.                | 3.15                | 20                                        | 22,500\$/15                                   | 1.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               | ;<br>•       |
| Electrical           |             | Kilowa++5               | 0.34      | 88<br><b>A</b>    | 3.10                | Ø<br>Ø                                    | 1,300,000\$/KW                                | N 0.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                     | 1.768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                               | 1.326                                                                                                         | 3.094        |
| Descent System       |             | Entry Wt. (165)         | 1         | <b>86</b>         | !                   | 60                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | e constant de l'acceptant de l'accep |                                                                                                                 |                                                                                                               |              |
| Experiments          |             | Weight (165)            | 67.0      | 10A               | 09.6                | 0                                         | 7,800\$/15                                    | 0.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                     | 2.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                               | 1.566                                                                                                         | 3.654        |
| Sensors              |             | 14- <b>40-14-016</b> -1 |           |                   |                     |                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | anga graphania a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                               |              |
| AGE                  |             | 5/c Dry Wt (105)        | 574.7     | <b>S</b>          | 08.0                | <b>C</b> inesastoni                       | a regulative control                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | an in a supplementations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | - Programme - |              |
| Tooling and Sp.      |             | 5/c Ory Wt (165)        | 574.7     |                   | 2.65                | gangajar oʻgagarangan oʻri > sindilik     | B                                             | and the state of t |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               |              |
| Test Equipment       |             | 10                      |           | 7                 | 20.03               | 5                                         |                                               | 3.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                     | 14.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>.</u>                                                                                                        | 10.809                                                                                                        | 25.085       |
| TOTAL 9              |             |                         |           | 2                 |                     |                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | العدية فالمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والم |                                                                                                               |              |
| Systems              |             |                         | _         |                   | ٠,<br>١             | ings, or \$100 kg/s a distribution of the | esspecial to a derival application on the ex- | , what position in two thems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | المنافقة المرمولية عن | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | igain dh-mhò mhillio                                                                                            | uninggg Shirikin (Co                                                                                          |              |
|                      |             | mark magge              |           | elitoro           | tie-                |                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                               |              |

RECEDENCE 1266-664

SPACECRAFT COST SUMMARY

TABLE IV - MARINER IV

| Z w L                                                      | Θ                           | <b>©</b>                                               | (C)               | •           | (a)                        | · dervise — springs deservings results |                 |
|------------------------------------------------------------|-----------------------------|--------------------------------------------------------|-------------------|-------------|----------------------------|----------------------------------------|-----------------|
|                                                            | DESIGN/DEVELOPMENT          | COST OF<br>TEST ARTICLES                               | D/D PLUS          | INTEGRATION | COST OF<br>FLIGHT ARTICLES | OF                                     | TOTAL           |
|                                                            |                             |                                                        | (i) + (ii)        | 3 f CER 12A | 12A Dollars,               | s, 10 <sup>6</sup>                     | (G) + (G) + (S) |
| Space craft Module 1                                       | 45,08                       | 14,41                                                  | 59,49             | 2.95        | 10.81                      | 1                                      | 73.25           |
|                                                            |                             |                                                        |                   |             |                            |                                        |                 |
| <b>o I</b>                                                 |                             |                                                        |                   |             |                            |                                        |                 |
|                                                            |                             |                                                        |                   |             |                            |                                        |                 |
|                                                            |                             | W.F                                                    | 59.49             |             |                            | 3                                      | 73.25           |
|                                                            |                             | 9                                                      |                   |             |                            | -                                      |                 |
| S/C Systems Integration -<br>Increment Ref: (2) & CER 12.A |                             |                                                        |                   |             |                            | <b>□</b><br><b>⊚</b>                   | 0               |
|                                                            |                             |                                                        |                   | S/C TPC     | •                          | <br>                                   | 73.25           |
| MISSION SUPPORT AND SPACE FLT OPNS                         | DESC                        | DESCRIPTION / INPUT                                    |                   | REF CER     | OPERATION                  |                                        | COST            |
| Proor am Management                                        |                             |                                                        |                   |             | 0.05 @                     |                                        | 3.66            |
| SETD                                                       | Mat Mode/Tech M/P Ratio     | ih M/P Ratio                                           |                   | 158         | K, Owhere K,               | e K =                                  | 2.93            |
| Phase A                                                    | Adv Studies                 |                                                        |                   | 1           | 0.01                       | <u> </u>                               | .73             |
| Phase B                                                    | Conceptual Design           | ngisa                                                  |                   | 1           | 0.01                       | -                                      | . 73            |
| Phase C                                                    | Project Definitio           | Project Definition, System Design, & Critical Hdw. Dex | Pritical Hdw. Dex |             | o. os @                    |                                        | 3.66            |
| Adv. Development                                           | Ng: 0 = Nun                 | 0 = Number of High Risk                                | Sub-Systems       | ı           | 0.05 (1+JN)                | (AN)                                   | 3.66            |
| Sterilization                                              | F = . ; Wc Ms =             | - N = SW                                               |                   | 13          | © 001/                     | ×                                      | •               |
| M. P. Equipment                                            | Mission Pecull              | Mission Pecullar Equipment At                          | SFOF & DSN        | 77          | II 0.34                    |                                        | 4.90            |
|                                                            | Mission Operations Thaining | tions Training; I                                      |                   | 9.0         | 0.60x10 x (T+3)+0.2 (MPEC) | 2(MPGC)                                | •               |
|                                                            | Mission Time                | Time (T) Months;                                       | 7 = 7             | 1           | O.20x106(T+3)              |                                        | 2.00            |
| 4                                                          | Mission Time (T) Months     | (T) Months;                                            |                   | 1           | 0.40×106 (T+3)             | ·                                      | 4.00            |
|                                                            |                             |                                                        |                   |             | Subtotal                   |                                        | 26.27           |
| Mat Implen Mode                                            | Mgt Implementation          | Mode:                                                  | LAB. MGT.         | 2           | K2 3 where                 | T. X.                                  | 0               |
| 40                                                         |                             | Nominal Program                                        |                   |             | % %                        | Section (Section) and applications     | 0               |
| Launch Vehicle                                             |                             |                                                        |                   |             |                            | 1<br>1<br>1<br>1                       | 22,53           |
|                                                            |                             |                                                        |                   |             |                            | DOLLARS                                | 122.05          |
|                                                            |                             |                                                        |                   |             |                            |                                        |                 |

PRC

R-870 29



TABLE IVA - MARS MISSION 1964 COSTS IN MILLIONS

2. Mars--Advanced Orbiter/Limited Lander in 1973-1975

? ^

TABLE V - DISTRIBUTION OF ADVANCED MISSION WEIGHTS TO COST CATEGORIES, SPACECRAFT BUS (WT. = 3,635 LBS)

|                  |         |                                              |                                         |                                 |                         |                                      |           | 1                  |                                        |                          |                   |                           |                                                  |
|------------------|---------|----------------------------------------------|-----------------------------------------|---------------------------------|-------------------------|--------------------------------------|-----------|--------------------|----------------------------------------|--------------------------|-------------------|---------------------------|--------------------------------------------------|
| Cost             | JPL     | Experi-<br>ments<br>or<br>Mission<br>Sensors | Naviga-<br>tion<br>and<br>Guid-<br>ance | Commu-<br>nications<br>TT and C | Data<br>Manage-<br>ment | Stabili-<br>zation<br>and<br>Control | Structure | Entry<br>Structure | Propul-<br>sion<br>Module<br>Structure | Elec-<br>trical<br>Power | Descent<br>System | Propu<br>Liquid<br>Rocket | Retro<br>Solid                                   |
| Items            | Weights | Jensors                                      | anco                                    |                                 |                         | <del> </del>                         | 1,000     |                    |                                        |                          |                   |                           |                                                  |
| Structure        | 1,000   |                                              |                                         |                                 |                         |                                      | 1,000     |                    |                                        |                          |                   |                           |                                                  |
| Thermal Control  | 100     |                                              |                                         | <u> </u>                        |                         |                                      | 100       |                    |                                        |                          |                   |                           |                                                  |
| Radio            | 154     |                                              |                                         | 154                             |                         |                                      |           |                    |                                        |                          |                   |                           | <del> </del>                                     |
| Command          | 30      |                                              |                                         | 30-                             |                         |                                      |           |                    |                                        | 1 015                    | <del> </del>      |                           |                                                  |
| Power            | 1,015   |                                              |                                         |                                 |                         | <u> </u>                             | <u> </u>  |                    |                                        | 1,015                    | <del> </del>      | <u> </u>                  |                                                  |
| C and S          | 70      |                                              | 70                                      |                                 |                         | <u> </u>                             |           |                    |                                        |                          | <del> </del>      |                           |                                                  |
| Telemetry        | 173     |                                              |                                         | 173                             |                         | <u> </u>                             |           |                    | <del> </del>                           |                          |                   | <del> </del>              | <u> </u>                                         |
| Attitude Control | 261     |                                              |                                         |                                 |                         | 261                                  |           |                    |                                        |                          | -                 | <del></del>               | <del>                                     </del> |
| Pyrotechnics     | 36      |                                              |                                         |                                 |                         |                                      | 36        |                    |                                        |                          | <del> </del>      |                           | -                                                |
| Cabling          | 181     | 30                                           | 30                                      | 30                              | 30                      | 31                                   | 30        |                    |                                        |                          |                   | <del> </del>              | <del> </del>                                     |
| Data Storage     | 120     |                                              |                                         |                                 | 120                     |                                      | <u> </u>  |                    |                                        | <u> </u>                 |                   | <del> </del>              | -                                                |
| Science          | 495     | 495                                          |                                         |                                 |                         |                                      |           |                    |                                        |                          | <del> </del>      |                           | -                                                |
| Totals           | 3,635   | 525                                          | 100                                     | 387                             | 150                     | 292                                  | 1,166     |                    | <u> </u>                               | 1,015                    |                   | <u> </u>                  |                                                  |

TABLE VIA - DISTRIBUTION OF ADVANCED MISSION WEIGHTS TO COST CATEGORIES, SPACECRAFT CAPSULE (WT. = 3,000 LBS)

| Cost<br>Categories                               |                | Experi-<br>ments         | Naviga-<br>tion      |                                 |                         | Stabili-                 |           | -                  | Propul-                     | P. J.                    |                   | Propu                                            | lsion          |
|--------------------------------------------------|----------------|--------------------------|----------------------|---------------------------------|-------------------------|--------------------------|-----------|--------------------|-----------------------------|--------------------------|-------------------|--------------------------------------------------|----------------|
| Items                                            | JPL<br>Weights | or<br>Mission<br>Sensors | and<br>Guid-<br>ance | Commu-<br>nications<br>TT and C | Data<br>Manage-<br>ment | zation<br>and<br>Control | Structure | Entry<br>Structure | sion<br>Module<br>Structure | Elec-<br>trical<br>Power | Descent<br>System | Liquid<br>Rocket                                 | Retro<br>Solid |
| Nonseparated Support Equipment                   | (517)          |                          |                      |                                 |                         |                          |           |                    |                             | <u> </u>                 |                   |                                                  |                |
| Adapter                                          | 100            |                          |                      |                                 |                         |                          | 100       |                    |                             |                          |                   |                                                  |                |
| Sterilization Canister Aft Section               | 73             |                          |                      |                                 |                         |                          | 73        |                    |                             |                          |                   |                                                  |                |
| Capsule Separation<br>Mechanism                  | 15             | •                        |                      |                                 |                         |                          | 15        |                    | ·                           |                          |                   |                                                  | <u> </u>       |
| Umbilical and Cabling                            | 6              | 1.0                      | 1.0                  | 1.0                             | 1.0                     | 1.0                      | 1.0       |                    |                             |                          |                   | ļ                                                | <b></b>        |
| Sterilization Canister Sepa-<br>ration Mechanism | 10             |                          |                      |                                 |                         |                          | 10        |                    |                             | ļ                        |                   |                                                  |                |
| Thermal Shielding                                | 35             |                          |                      |                                 |                         |                          | 35        | ·                  |                             | ļ                        |                   | <u> </u>                                         | -              |
| Contingency                                      | 278            | 1.2                      | 1.2                  | 1.2                             | 1.2                     | 1.1                      | 272.1     |                    |                             |                          | <u> </u>          |                                                  | -              |
| Separated Support Equipment                      | (142)          |                          |                      |                                 |                         |                          |           |                    |                             |                          | <u> </u>          |                                                  | <del> </del>   |
| Sterilization Canister Fore Section              | 92             |                          |                      |                                 |                         |                          | 92        |                    |                             |                          |                   |                                                  |                |
| Sterilization Canister Sepa-<br>ration Mechanism | 10             |                          |                      |                                 |                         |                          | 10        |                    |                             | <u> </u>                 |                   |                                                  | -              |
| Sterilization Canister Vent                      | 5              |                          |                      |                                 |                         |                          | 5         | ļ                  | <del> </del>                |                          | -                 | <del>                                     </del> | -              |
| Thermal Shielding                                | 35             |                          |                      |                                 |                         |                          | <u> </u>  | <u> </u>           | <u> </u>                    | <del> </del>             |                   | -                                                | -              |
| Separated Capsule Subsystem                      | (596)          |                          |                      |                                 |                         |                          |           |                    |                             |                          | <del></del>       | <u> </u>                                         | 550            |
| Propulsion                                       | 550            |                          |                      |                                 |                         |                          |           |                    |                             | -                        | <del> </del>      | <b></b>                                          | 1 220          |
| Propulsion Thrust Structure                      |                |                          |                      |                                 |                         |                          | 26        |                    |                             | <b></b>                  |                   |                                                  | <del> </del>   |
| Propulsion Separation Mechanism                  | 20             |                          |                      |                                 |                         |                          | 20        |                    |                             |                          |                   |                                                  |                |

TABLE VIB - DISTRIBUTION OF ADVANCED MISSION WEIGHTS TO COST CATEGORIES, SPACECRAFT CAPSULE (WT. = 3,000 LBS)

| Cost<br>Categories                   |                | Experi-<br>ments<br>or | Naviga-<br>tion<br>and | Commu-                | Data            | Stabili-<br>zation |           |                    | Propul-<br>sion     | Elec-           |                   | Propu            | lsion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|----------------|------------------------|------------------------|-----------------------|-----------------|--------------------|-----------|--------------------|---------------------|-----------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Items                                | JPL<br>Weights | Mission<br>Sensors     | Guid-<br>ance          | nications<br>TT and C | Manage-<br>ment | and<br>Control     | Structure | Entry<br>Structure | Module<br>Structure | trical<br>Power | Descent<br>System | Liquid<br>Rocket | Retro<br>Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Entry Capsule Subsystem              | (500)          |                        |                        |                       |                 |                    |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aeroshell Structure                  | 167            | -                      |                        |                       |                 |                    | 167       |                    |                     | i<br>Ši         |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aeroshell Heat Shield                | 159            |                        |                        |                       |                 |                    |           | 159                |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Paint                                | 12             |                        |                        |                       |                 |                    | 12        |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Capsule Separation<br>Mechanism      | 15             |                        |                        |                       |                 |                    |           | 15                 |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entry Subsystem Support<br>Structure | 15             |                        |                        |                       | ·               |                    |           | 15                 |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attitude Control System              | 36             |                        |                        |                       |                 | 36                 |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contingency                          | 96             |                        |                        |                       |                 | 8.5                | 42,5      | 45.0               |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entry Subsystems                     | (680)          |                        |                        |                       |                 |                    |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sterilization Support                | 9              |                        | 1                      |                       |                 |                    | 9         |                    | ·                   |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entry Payload                        | 30             | 30                     |                        |                       |                 |                    |           |                    | ·                   |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relay Radio                          | 48             |                        |                        | 48                    |                 |                    |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyrotechnics                         | 18             |                        |                        |                       |                 |                    | 18        |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Power                                | 100            |                        |                        |                       |                 |                    |           |                    |                     | 100             |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Payload Structure                    | 45             |                        |                        |                       |                 |                    | 45        |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cabling                              | 50             | 10                     |                        | 10                    | 10              | 10                 | 10        |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attitude Control Electronics         | 24             |                        |                        |                       |                 | 24                 |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature Control                  | 20             |                        |                        |                       |                 |                    |           | 20                 |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sequencer                            | 21             |                        |                        | 21                    |                 |                    |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antenna (2) and Support Structure    | 24             |                        |                        | 24                    |                 |                    |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Altimeter Subsystem                  | 25             |                        |                        |                       |                 | 25                 |           |                    |                     |                 |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Supersonic Parachute                 | 200            |                        |                        |                       |                 |                    |           |                    |                     |                 | 200 .             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contingency                          | 66             | 4.3                    |                        | 11.1                  | 1.1             | 6.4                | 10.9      |                    |                     | 10.7            | 21.5              |                  | The second secon |

TABLE VIC - DISTRIBUTION OF ADVANCED MISSION WEIGHTS TO COST CATEGORIES, SPACECRAFT CAPSULE (WT. = 3,000 LBS)

| Cost<br>Categories              |                | Experi-<br>ments | Naviga-<br>tion<br>and | Commu-                | Dat <b>a</b>    | Stabili-<br>zation | e e       |                    | Propul-<br>sion     | Elec-           |                   | Propu            | lsion          |        |
|---------------------------------|----------------|------------------|------------------------|-----------------------|-----------------|--------------------|-----------|--------------------|---------------------|-----------------|-------------------|------------------|----------------|--------|
| Items                           | JPL<br>Weights | Mission          | Guid-<br>ance          | nications<br>TT and C | Manage-<br>ment | and                | Structure | Entry<br>Structure | Module<br>Structure | trical<br>Power | Descent<br>System | Liquid<br>Rocket | Retro<br>Solid |        |
| Landed Weight                   | (565)          |                  |                        |                       |                 |                    |           |                    |                     | :<br>:          |                   |                  |                |        |
| Impact Limiter                  | 255            | ·                |                        |                       |                 |                    | 255       |                    |                     |                 |                   |                  |                | ]      |
| Impact Limiter Cover            | 21             |                  |                        |                       |                 |                    | 21        | ·                  |                     |                 |                   |                  |                |        |
| Temperature Control             | 18             |                  |                        |                       |                 |                    | 18        |                    |                     |                 |                   |                  |                | ]      |
| Erecting Devices                | 11             |                  |                        |                       |                 |                    | 11        |                    |                     | į               |                   |                  |                | ]      |
| Structure and Cabling           | 46             |                  |                        |                       |                 |                    | 46        |                    |                     |                 |                   |                  |                | ]      |
| Science Subsystem               | 25             | 25               |                        |                       |                 |                    |           |                    |                     |                 | ·                 |                  |                |        |
| Direct Radio                    | 3              |                  |                        | 3                     |                 |                    |           | ·                  |                     |                 |                   |                  |                |        |
| Power Sequencing                | 40             |                  |                        |                       | <del> </del>    |                    |           |                    |                     | 40              |                   |                  |                |        |
| Power Timing                    | 6              |                  | ·                      | 6                     |                 |                    |           |                    |                     |                 |                   |                  |                |        |
| Data Handling                   | 3              |                  |                        |                       | 3               |                    |           |                    |                     |                 |                   |                  |                |        |
| Data Storage                    | - 8            | <u> </u>         |                        |                       | 8               |                    |           |                    | ·                   |                 |                   |                  |                | 7      |
| Pyro and Impact Limiter Removal | 4              |                  |                        |                       |                 |                    | 4         |                    |                     |                 |                   |                  |                |        |
| Subtotals                       | 2,875          | 71.5             |                        | 125.3                 | 24.3            | 112.1              | 1,196.5   | 420.7              |                     | 150.7           | 221.5             |                  | 576            | = 2,87 |
| Contingency                     | 125            | 3.1              |                        | 5.5                   | 1.1             | 4.9                | 51.1      | 10.3               |                     | 6.5             | 9.6               |                  | 25             | = 12   |
| Totals                          | 3.000          | 74.6             |                        | 130.8                 | 25.4            | 117.0              | 1.247.6   | 431.0              |                     | 157.2           | 231.1             |                  | 601            | 3,000  |

TABLE VII - DISTRIBUTION OF ADVANCED MISSION WEIGHTS TO COST CATEGORIES, PROPULSION MODULE (WT. = 15,000 LBS)

| ion              | Retro<br>Solid                    |          |           |        |        |
|------------------|-----------------------------------|----------|-----------|--------|--------|
| Propulsion       | Liquid Retro<br>Rocket Solid      |          | 400       | 700    |        |
|                  | Descent<br>System                 |          |           |        |        |
| Elec-            | trical<br>Power                   |          |           |        |        |
| Propul-          | Module<br>Structure               | 1,600    |           |        | 1,600  |
|                  |                                   |          |           |        |        |
|                  | Structure Structure               |          |           |        |        |
| Stabili-         | zation<br>and<br>Control          | T        |           |        |        |
|                  | Data<br>Manage-<br>ment           |          |           |        |        |
|                  | Commu-<br>nications N<br>TT and C |          |           |        |        |
| Naviga-<br>tion  | and<br>Guid-                      |          |           |        |        |
| Experi-<br>ments | or<br>Mission<br>Sengors          |          |           |        |        |
|                  | JPL<br>Weights                    |          | 1,000     | 400    | 2,000  |
| Cost             | Itame                             | / compar |           |        |        |
|                  |                                   |          | Structure | Engine | Totals |

| Item                 | Weight (lbs) |
|----------------------|--------------|
|                      | 5292         |
| and D/s              | 3,000        |
| Capsule              |              |
| Propulsion ModuleDry | 8 (36        |
| Total                | 6,60,6       |

Sterilization Fraction =  $\frac{W_C}{W_{SC}} = \frac{3,000}{8,635} = .348$ 

NEUNDER IN. 66-669/ PRC R-870 36

## LAUNCH VEHICLE COST

|                | ,                      |                                 |                  |                    | *         | •          |          |      |               |          |              |                 |                  |
|----------------|------------------------|---------------------------------|------------------|--------------------|-----------|------------|----------|------|---------------|----------|--------------|-----------------|------------------|
| Saturn S-1C    | QUANTIFYING PARAMET    | a<br>A                          | ж.<br>m.<br>n. о | FIRST UNIT<br>COST | STRUCTURE | COST       | LEARNING | ITEM | ж.<br>П<br>П  | LEARNING | COST OF ITEM | NUMBER<br>ITEMS | COST             |
| Structure      | State Propel-          |                                 | Ex               | 100 1              |           |            |          | 2    |               | 8 1      | 000 000 76   |                 | 36 000 000 J     |
|                | lant Wt. (ibs)         | 4,320,000                       | 7-23             | 130                | 323,000   | 42,000,000 | 90%      | 92   | 8- <b>\</b> 7 | 79.0     | 000,000,00   | -               | 0000000          |
| Propulsion     | Engine                 | 1.500.000                       | Ä<br>X           |                    |           | 3,700,000  | 90%      | 150  | Š.            | 24.0     | 1,740,000    | 5               | 8,700,000        |
|                | 1 or 051 (105)         |                                 | 7                |                    |           |            |          |      | )<br>}        |          |              |                 |                  |
| Guidance and   | Weight (165)           | Not applicable<br>to this stage | Ex.<br>[V-3      |                    |           |            |          |      | Ex -8         |          |              |                 |                  |
|                | ,                      |                                 |                  |                    | -         |            |          |      |               |          |              |                 |                  |
| Transportation | Stage Dry Weight (15c) | 403,000                         | 7×.              |                    |           |            |          |      | 1             |          |              |                 | 10,000           |
| Ship or Rail X |                        |                                 |                  |                    |           |            |          |      |               |          |              | · ·             |                  |
| Acceptance     | Stage Gross            |                                 | m<br>×           |                    |           |            |          |      |               |          |              |                 |                  |
| Test           | Weight (165)           | 4,723,000                       | LV-5             |                    |           |            |          |      |               |          |              |                 | 1,400,000        |
| Launch         | L.V. Gross             | Not applicable                  | ë<br>X           |                    |           |            |          |      |               |          |              |                 |                  |
| Services       | Weight (165)           | to this stage                   | 9-27             |                    |           |            |          |      |               |          |              |                 |                  |
| 40010000       | 400110000              |                                 | ÿ                |                    |           |            |          |      |               |          |              |                 |                  |
| GLUBIOGOLA     | Type                   | LOX-RP-1                        | .×-7             |                    |           |            |          |      |               |          | 0.025/1b     | 4,230,000       | 108,000          |
|                |                        |                                 |                  |                    |           |            |          |      |               |          |              | TOTAL [         | TOTAL 36,218,000 |

Other Pertinent Data

Engine Dry Weight 16,000 (ea) (1bs) Engine Type

Stage Thrust (16s) 7.5 M

TABLE VIIIB

## LAUNCH VEHICLE COST

| Saturn S-II STAGE 2 | QUANTIFYING<br>PARAMETER        | QUANTIFYING PARAMETER           | REF.<br>CER  | FIRST UNIT STRUCTURE COST (DOLLARS) (WT IN 185) (OOLLARS) | STRUCTURE<br>(WT IN LBS) | FIRST UNIT<br>COST<br>(OOLLARS) | LEARNING<br>CURVE | ITEM<br>COSTED | ス<br>の<br>ロ<br>ロ<br>ス | REF LEARNING<br>CER FACTOR | COST OF ITEM (DOLLARS) | NUMBER<br>ITEMS | COST<br>(POLLARS)  |
|---------------------|---------------------------------|---------------------------------|--------------|-----------------------------------------------------------|--------------------------|---------------------------------|-------------------|----------------|-----------------------|----------------------------|------------------------|-----------------|--------------------|
| Structure           | Stage Propei-<br>lant Wt. (165) | 930,000                         | Ex<br>LV-1   | 009                                                       | 62,600                   | 37,560,000                      | 90%               | 26th           | ج<br>د<br>د           | 0.62                       | 23,287,000             |                 | 23,287,000         |
| Propulsion          | Engine<br>Thrust (105)          | 200,000                         | Ex -2        |                                                           | :                        | 2,400,000                       | %06               | 200th          | ₹ <u>₹</u>            | 0.44                       | 1,055,000              | ſC.             | 5,275,000          |
| Guidance and        | Weight (165)                    | Not applicable to this stage    | Ex.<br>LV-3  |                                                           |                          |                                 |                   |                | Έ<br>-β               |                            |                        |                 |                    |
| fransportation Aur  | Stage Ory<br>Weight (155)       | 80,000                          | ري.<br>الا-4 |                                                           |                          |                                 |                   |                | 1                     |                            |                        |                 | 2,000              |
| Acceptance<br>Test  | Stage Gross<br>Weight (165)     | 1,010,000                       | Ex.<br>LV-5  |                                                           |                          |                                 |                   |                | 1                     |                            |                        |                 | 610,000            |
| Launch<br>Services  | L.V. Gross<br>Weight (155)      | Not applicable<br>to this stage | Ex.<br>LV-6  |                                                           |                          |                                 |                   |                | 1                     |                            |                        |                 |                    |
| Propellants         | Propellant<br>Type              | LOX-LH2                         | Ex.<br>LV-7  |                                                           |                          |                                 |                   |                |                       |                            | 0.50/1b                | 930,000         | 465,000            |
|                     |                                 |                                 |              |                                                           |                          |                                 |                   |                |                       |                            |                        | TOTAL           | TOTAL [29,639,000] |

Other Pertinent Data

Liguid Engine Type

Engine Dry Weight 3,480 (ea) (165)

Stage Thrust (1bs) [ 1.0 M

### LAUNCH VEHICLE COST

|                         |                             |                                 | 1           | 4                                              |                          |                                 |                   |                |                   |                                                                                                                |                        |         |                   |
|-------------------------|-----------------------------|---------------------------------|-------------|------------------------------------------------|--------------------------|---------------------------------|-------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------|------------------------|---------|-------------------|
| S.duru S-IVB            | QUANTIFYING<br>PARAMETER    | QUANTIFYING PARAMETER PARAMETER | CEE.        | FIRST UNIT STRUCTURE (DOLLARS/LBS) (WT IN LBS) | STRUCTURE<br>(WT IN 185) | FIRST UNIT<br>COST<br>(DOLLARS) | LEARNING<br>CURVE | ITEM<br>COSTED | 8.0<br>m m<br>T & | REF LEARNING<br>CER FACTOR                                                                                     | COST OF ITEM (DOLLARS) | NUNIBER | COST<br>(DOLLARS) |
| Structure               | Stage Propellant Wt. (165)  | 216,000                         | EX-1        | 8.20                                           | 055,15                   | 17,600,000                      | 90%               | 30th           |                   | 0,565                                                                                                          | 9,930,000              |         | 9,430,000         |
| Propulsion              | Engine<br>Thrust (165)      | 200,000                         | Ex LV-2     |                                                |                          | 2,400,000                       | 90%               | 200th          | ₹.                | 0.44                                                                                                           | 1,055,000              |         | 000,250,1         |
| Guidance and<br>Control | Weight (165)                | 4,000                           | Ex. 17-3    | 1,000                                          |                          | 4,000,000                       | %06               | 3oth           | Ε<br>Γ<br>Κ<br>Ε  | 0.565                                                                                                          | 2,260,000              | -       | 7,260,000         |
| Transportation Air X    | Stage Dry<br>Weight (Ibs)   | 25,000                          | £x.<br>LV-4 |                                                |                          |                                 |                   |                |                   | a de la Managa de Santa de La característico de la característico de la característico de la característico de |                        |         | 3,000             |
| Acceptance              | Stage Gross<br>Weight (165) | 241,000                         | Ex.<br>LV-5 |                                                |                          |                                 |                   |                | 1                 |                                                                                                                |                        |         | 235,000           |
| Launch<br>Services      | L.V. Gross<br>Weight (16s)  | 5,922,000                       | Ex.<br>LV-6 |                                                |                          |                                 |                   |                |                   |                                                                                                                |                        |         | 3,000,000         |
| Propellants             | Propellant<br>Type          | LOX-LH2                         | Ex. LV-7    |                                                |                          |                                 |                   |                | 1                 |                                                                                                                | 0.50/1b                | 216,000 | 180,000           |

Other Pertinent Data

TOTAL [16,591,000 ]

29,639,000

Stage 2

36,218,000

Stage 3

82,448,000

L. V. Total

Engine Dry Weight 3,480 (e3) (165)

Stage Thrust (165) [200,000]

Engine Type

RE-ORDER No. 66-664 PRC R-870

## SPACECRAFT COST

PROGRAM Mars Advanced Orbiter/Limited Lander
MODULE Spacecraft Bus

|                                   |           | 1                 |                                  |              |          |           |                                 |        |                         |                             |                          |                               |                       |
|-----------------------------------|-----------|-------------------|----------------------------------|--------------|----------|-----------|---------------------------------|--------|-------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------|
| COST                              |           | QUANTIFYING       | Q.                               | 8<br>3<br>7  | DEV'L'PT | 87. C     | PARAMETER<br>OUTPUT<br>DOLLARS/ | FIRST  | NO.<br>TEST<br>ARTICLES | COST OF<br>TEST<br>ARTICLES | NO<br>FLI HT<br>ARTICLES | COST OF<br>FLIGHT<br>ARTICLES | TOTAL<br>HROW<br>COST |
| Structure                         | TO LANGUE | Weight (165)      | 1.166                            | ¥.           | 16.20    | 18        | \$/16                           | 1.643  |                         | Ш                           | 4                        | 6.572                         | 14.787                |
| Propulsion<br>Module<br>Structure |           | <u>+</u>          |                                  | L.I.A        |          | 1.18      |                                 |        |                         |                             |                          |                               | -                     |
| Entry<br>Structure                |           | Weight (10s)      |                                  | Ā            |          | <u>.</u>  |                                 |        |                         |                             |                          |                               |                       |
| Propulsion                        | Liquid    | Thrust (16s)      |                                  | <b>A2</b>    |          | 28        |                                 |        |                         |                             |                          |                               |                       |
| Retro-Propulsion                  | Solid     | Weight (105)      |                                  | 3A           |          | 38        |                                 |        |                         |                             | •                        |                               |                       |
| Navigation<br>and<br>Guidance     |           | Weight (165)      | 100                              | 44           | 4.60     | <b>4</b>  | 4,350\$/lb                      | 0.435  | 'n                      | 2.175                       | 4.                       | 1.740                         | 3.915                 |
| Stabilization<br>and Control      |           | Weight (165)      | 262                              | 5A           | 5.10     | 58        | 3,100\$/1b                      | 0.905  | ĸ                       | 4.525                       | 4.                       | 3.620                         | 8.145                 |
| Communications                    |           | Weight (165)      | 387                              | • <b>6</b> A | 25.50    | 99        | 5,500\$/1b                      | 2.150  | S                       | 10.750                      | 4                        | 8.600                         | 19.350                |
| Data<br>Management                |           | Weight (165)      | 150                              | AT.          | . 00°9   | 18        | 15,100\$/1b                     | 2.260  | <b>ທ</b>                | 11.300                      | 4                        | 9.040                         | 20.340                |
| Electrical                        |           | Kilowatts         | 0.20                             | ₩            | 17.50    | <b>20</b> | 8,700,000\$/KW<br>x 6 units     | 10.440 | <b>,</b> 1              | 10.440                      | 4                        | 41.760                        | 52.200                |
| Descent System                    |           | Entry Wt. (16s)   | •                                | 9.4          | •        | 96        |                                 |        | •                       |                             |                          |                               |                       |
| Experiments or Mission Sensors    |           | Weighf (165)      | 525                              | ¥0           | 25.00    | 60        | 5,000\$/1b                      |        | <b>w</b>                | 13.100                      | 4                        | 10.480                        | 23.580                |
| AGE                               |           | 5/c Ory Wt. (185) | 3,635                            | ¥.           | 22.3     |           |                                 |        |                         |                             |                          |                               |                       |
| Tooling and Sp. Test Equipment    |           | 5/C Ory Wt. (155) | 3,635                            | <b>E</b>     | 9.6      | .         |                                 |        |                         |                             |                          | 8<br>8<br>9<br>               |                       |
|                                   |           |                   |                                  | 7            | 131.80   | 9         |                                 | 20.243 |                         | 60.505                      | 8                        | 81.802                        | 142.317               |
| Systems<br>Integration            |           |                   | $1 + (2) = $192.305 \times 10^6$ | 12A          | 9.40     |           |                                 | ,      |                         |                             |                          |                               | •                     |
|                                   |           |                   |                                  |              |          |           |                                 |        |                         |                             |                          |                               | 3                     |

RE-ORDER 1066-664

SPACECRAFT COS

PROGRAM Mars Advanced Orbiter/Limited Lander MODUI E Entry Capsule

|                                   |             |                         |                                       |                   |                             |                                                                                                                                                                                                                             |                                         |                                       |                                       |                             |                           |                               | 0                     |
|-----------------------------------|-------------|-------------------------|---------------------------------------|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|---------------------------|-------------------------------|-----------------------|
| CATEGORIES                        | DESCRIPTION | QUANTIFYING<br>PARMETER | PARAMETER<br>INPUT                    | 8 0<br>8 8<br>7 8 | DESIGN/<br>DEV'L'PT<br>COST | REP<br>CER                                                                                                                                                                                                                  | PARAMETER<br>OUTPUT<br>DOLLARS/         | FIRST<br>UNIT<br>COST                 | NO.<br>TEST<br>ARTICLES               | COST OF<br>TEST<br>ARTICLES | NO.<br>FLIGHT<br>ARTICLES | COST OF<br>FLIGHT<br>ARTICLES | TOTAL<br>HROW<br>COST |
| Structure                         |             | Weight (165)            | 1,247.6                               | Z)                | 16.70                       | 0                                                                                                                                                                                                                           | 1,800\$/1b                              | 2.243                                 | ₩                                     | 11.215                      | 4                         | 8.972                         | 20.187                |
| Propulsion<br>Module<br>Structure |             | Weignt (165)            |                                       | H.IA              |                             | 1.1                                                                                                                                                                                                                         |                                         |                                       |                                       | - to the second second of   |                           |                               |                       |
| Entry<br>Structure                |             | Weight (165)            | 431.0                                 | ⊴                 | 22.60                       | <u>.</u>                                                                                                                                                                                                                    | 3,200\$/1b                              | 1.380                                 | S                                     | 006.9                       | 4                         | 5,520                         | 12.420                |
| Propulsion                        | Liquid      | Thrust (16s)            |                                       | <b>2</b> A        |                             | 82                                                                                                                                                                                                                          |                                         |                                       |                                       |                             |                           |                               |                       |
| Retro-Propulsion                  | Solid       | Weight (165)            | 601.0                                 | 3A                | 5.27                        | 60<br>60                                                                                                                                                                                                                    | 510\$/1b                                | 0.307                                 | 5                                     | 1.535                       | 4                         | 1.228                         | 2.763                 |
| Navigation<br>and<br>Guidance     |             | Weight (165)            |                                       | 44                |                             | 4<br>80                                                                                                                                                                                                                     |                                         |                                       |                                       |                             |                           |                               |                       |
| Stabilization<br>and Control      |             | Weight (165)            | 117.0                                 | 5A                | 3.75                        | 58                                                                                                                                                                                                                          | 4,050\$/1b                              | 0.474                                 | 'n                                    | 2.370                       | 4.                        | 1.896                         | 4.266                 |
| Communications                    |             | Weight (16s)            | 130.8                                 | <b>6A</b>         | 11.10                       | 69                                                                                                                                                                                                                          | 5,800\$/1b                              | 092.0                                 | <u>.</u>                              | 3.800                       | 4                         | 3.040                         | 6.840                 |
| Data<br>Management                |             | Weight (165)            | 25.4                                  | ZA.               | 2.10                        | 92                                                                                                                                                                                                                          | 27,000\$/15                             | 0.685                                 | \$                                    | 3.425                       | 4                         | 2.740                         | 6.165                 |
| Electrical<br>Power               | Fuel Cell   | Kilowatts               | 0.10                                  | \$                | 1.10                        | 60                                                                                                                                                                                                                          | 1,500,000\$/KW                          | 0.150                                 | <b>v</b> n                            | 0.750                       | 4                         | 0.600                         | 1.350                 |
| Descent System                    |             | Entry Wt. (165)         | 17.45                                 | 98                | 10.90                       | 80                                                                                                                                                                                                                          | 52\$/16                                 | 0.091                                 | 'n                                    | 0.455                       | 4                         | 0.364                         | 0.819                 |
| Experiments or Mission Sensors    |             | Weight (16s)            | 74.60                                 | 10A               | 10.00                       | <b>2</b> 0                                                                                                                                                                                                                  | 7,500\$/1b                              | 0.560                                 | v                                     | 2.800                       | 4                         | 2.240                         | 5.040                 |
| AGE                               |             | 5/c Dry Wt. (165)       | 3,000                                 | 2                 | 19.00                       |                                                                                                                                                                                                                             |                                         |                                       | Marcia mattida Maria Aga e            |                             |                           |                               |                       |
| Tooling and Gp.<br>Test Equipment | •           | 5/c Dry Wt. (168)       | 3,000                                 | <b>S</b>          | 8.40                        |                                                                                                                                                                                                                             |                                         | engga elikusur-like cirentagaikur ora |                                       |                             |                           |                               |                       |
| TOTALS                            |             |                         |                                       | <b>3</b> A        | 110.92                      |                                                                                                                                                                                                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6.65                                  | * * * * * * * * * * * * * * * * * * * | 33,25                       |                           | 26.60                         | 58.85                 |
| Systems<br>Integration            |             | discount and            | 1 + (2) =<br>144.17 × 10 <sup>6</sup> | 12A               | 7.20                        | And the second continues and the second seco |                                         |                                       |                                       |                             |                           |                               |                       |

### TABLE INC SPACECRAFT COST

PROGRAM Mars Advanced Orbiter/Limited Lander
MODULE Propulsion Module

| CUST<br>CATEGORIES               | DESCRIPTION | QUANTIFYING<br>PARMETER | PARAMETER<br>INPUT                 | REF         | DESIGN/<br>DEV'L'PT<br>COST | REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PARAMETER<br>OUTPUT<br>DOLLARS/- | UNIT  | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COST OF<br>TEST<br>ARTICLES | NO.<br>FLIGHT<br>ARTICLES | COST OF<br>FLIGHT<br>ARTICLES | TOTAL<br>HROW<br>COST |
|----------------------------------|-------------|-------------------------|------------------------------------|-------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------|-----------------------|
| Structure                        |             | Weight (165)            | 1,600                              | IA          | 32.50                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,800\$/1b                       | 4.480 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.400                      | +                         | 17.920                        | 40.32                 |
| Propulsion Module Structure      |             | Weight (165)            |                                    | 1.1A        |                             | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| Entry<br>Structure               |             | Weight (15s)            |                                    | IA          |                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| Propulsion                       | Liquid      | Thrust (lbs)            | 12,000                             | ZA          | 6.40                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.1\$/1b                        | 0.193 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.965                       | 4                         | 0.772                         | 1.737                 |
| Retro-Propulsion                 | Solid       | Weight (155)            |                                    | 3 <b>A</b>  |                             | 3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               | ·                     |
| Navigation<br>and<br>Guidance    |             | Weight (165)            |                                    | 44          |                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| Stabilization and Control        |             | Weight (165)            |                                    | 5A          |                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               | and the second        |
| Communications                   |             | Weight (165)            |                                    | 6A          |                             | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           | , è                           |                       |
| Data<br>Management               |             | Weight (165)            |                                    | 7A          |                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| Electrical<br>Power              |             | Kilowatts               |                                    | 8A          |                             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           | ,                             |                       |
| Descent System                   | <u>-</u>    | Entry Wt. (1bs)         |                                    | 9A          |                             | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| Experiments or Mission Sensors   |             | Weight (165)            |                                    | 10 <b>A</b> |                             | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |       | de des constantes de la constante de la consta |                             |                           |                               |                       |
| AGE                              |             | S/C Dry Wt (165)        | 2,000                              | 11A         | 14.70                       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           |                           |                               |                       |
| Tooling and Sp<br>Test Equipment |             | S/C Dry Wt (165)        | 2,000                              | 11A         | 6.30                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                               |                       |
| TOTALS                           |             |                         |                                    | Δ. 7.       | 59.90                       | <b>①</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 4.673 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.305                      | 2                         | 18.692                        | 42.057                |
| Systems<br>Integration           |             |                         | 1 + 2 =<br>78.59 x 10 <sup>6</sup> | 12A         | 3.95                        | - The state of the |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e a same u                  |                           |                               | ·                     |

RE-ORDER NO. 66-664

TABLE X - MARS ADVANCED ORBITER/LIMITED LANDER

# SPACECRAFT COST SUMMARY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                  |                                                    |                                         |             |                                                   | Service of the control of the contro | Charles and Charle |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------|-----------------------------------------|-------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                  | @                                                  | <b>@</b>                                |             |                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESIGN/DEVELOPMENT | COST OF<br>TEST ARTICLES                           | D/D PLUS<br>TEST ARTICLES               | INTEGRATION | NOT                                               | COST OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AND THE PROPERTY OF THE PROPER |                    |                                                    | Q + Q                                   | @ f ce      | F CER 12A                                         | Dollars, 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 • 4 • 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131.80             | 60.51                                              | 192.31                                  | 9.40        |                                                   | 81.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 283.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 33,25                                              | 144.17                                  | 7.20        |                                                   | 26.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.90              | 23.37                                              | 83.27                                   | 4.30        |                                                   | 18.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                    | -                                       |             |                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                  |                                                    |                                         |             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 3                                                  |                                         |             |                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 567.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 9                                                  |                                         |             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S/C Systems Integration -<br>Increment Ref: (7) & CER 12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                    |                                         |             |                                                   | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                    |                                         | L 3/S       | TPC                                               | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 576.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MISSION SUPPORT AND SPACE FLT OPNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | DESCRIPTION / INPUT                                |                                         | REF CER     | Ö                                                 | OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Processes Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                    |                                         | ı           | 0.05                                              | <b>6</b> 9 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SETD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mot Mode/Tech      | ch M/P Ratio                                       |                                         | 158         |                                                   | K1 @ where K1 = 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A Gard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adv Studies        | •                                                  |                                         | 1           | 0.01                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptual             | Design                                             |                                         | 1           | 0.01                                              | Ø 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Definition | Project Definition, System Design, & Critical Hdw. | Critical Hdw. Dex                       | ſ           | 0.05                                              | \$ @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Adv. Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No = 3 = Nar       | = Number of High Risk                              | Sub-Systems                             | t           | 0.05                                              | S @ (1+JNg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sterilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                 | 5 : WE ME = .348 ; N=                              |                                         | <u>س</u>    | 13.4                                              | 13.42 /100 @ X N/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| M D Fairment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mission Peculi     | Peculian Equipment At                              | SFOF & DSN                              | 4           | m                                                 | 96: =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Operations Training;                               | ~                                       | ı           | 0.60x106,                                         | 0.60x106x(T+3)+0.2(MP6C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Time (T) Months ;                                  | 7 = 7                                   | 1           | 0.20x                                             | 0.20x106(T+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | (T) Months                                         | L                                       | 1           | 0.40x                                             | 0.40×106 (T+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                    |                                         |             | ganana kana a sa | Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 298.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mat Impite Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mgt Implementation | Mode:                                              | SYS MGT                                 |             |                                                   | K2 (3) where K2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -40.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Schedule / Program Chg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Parallel Development                               |                                         |             | 22.                                               | 22.0/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Launch Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                    | 7 4 4 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 |             | ***                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                    |                                         |             |                                                   | 1963 DOLLARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,043.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



PRC R-870

### F. Scope and Accuracy of the Cost Model

The launch vehicle costs were considered as procurement costs only with the cost of any development considered to be negligible or inherited from other programs. Solid rockets were not considered.

The liquid rocket stages considered were LOX/RP-1 and LOX/LH<sub>2</sub>. It is felt that the use of Exhibit LV-1 for the cost of LOX/RP-1 stages will result in an error not to exceed ± 10 percent; but that the use of the cost curve for LOX/LH<sub>2</sub> stages will result in an error on the low side between zero and 44 percent in the region of propellant weights of 1,000,000 pounds and greater. The reason for this error is traceable to meager data points and the influence of one particular program. For the Saturn V Launch Vehicle cost, the cumulative error (on the low side), considering all three stages, is estimated not to exceed 18 percent.

Within the spacecraft subsystem cost categories, the error in Design/Development costs is estimated at ±40 to 45 percent, whereas the first unit costs are estimated to be ±25 to 30 percent. The reason for the greater errors in Design/Development costs are largely two-fold: (1) meager data in segregating Design/Development costs; and (2) the difficulty in quantifying the impact of inherited development from past programs.

With regard to size of spacecraft to be costed by this method, it is felt that the costing errors stated above increase substantially if the total dry weight of the spacecraft is less than 150 to 200 pounds or more than 10,000 to 12,000 pounds.

Whereas the distribution of costs to Design/Development and first unit costs were engineering judgments in some of the past programs analyzed, the total program costs are estimated to be in error by not more than \$25 percent.

The costs shown in this report are based on 1965 dollars. For future years, the costs obtained from this model should be escalated by three percent per year since 1965.

### G. Recommendations for Future Cost Accounting

Part of the purpose of a cost model is to establish a framework for evaluating and displaying data on future spacecraft programs. As

mentioned previously in subsection II. B, the initial cost categories chosen are closely related to the quantity of cost data available in these categories; however, it seems appropriate to make some recommendations for future cost accounting at this time.

As the size of unmanned spacecraft programs grows, it appears particularly important to establish new cost categories as follows for both the launch vehicle and spacecraft:

- o Design
- o Fabricate and Assemble Test Hardware
- o Fabricate and Assemble Flight Hardware
- o Ground Development Testing
- o Space Flight Operations

It is also suggested that these categories be used within each subsystem and related activities where appropriate--for example:

### Utilization of Cost Categories

| Spacecraft<br>Subsystem                 | Data<br>Management | AGE* | Tooling and Special Test Equipment*         |
|-----------------------------------------|--------------------|------|---------------------------------------------|
| Design                                  | Yes                | Yes  | Yes                                         |
| Fabricate and Assemble<br>Test Hardware | Yes                | Yes  | Yes                                         |
| Fabricate and Assemble Flight Hardware  | Yes                | No   | Yes                                         |
| Ground Development Testing              | Yes                | Yes  | Yes                                         |
| Space Flight Operations                 | No                 | No   | Yes, for mission peculiar equipment at SFOF |

### \* For Data Management

In this way, design costs can be segregated from ground testing, and the level of ground testing and its influence on subsequent reliability achievement assessed.

### APPENDIX

STANDARDIZED COST FORMS AND COST ESTIMATING RELATIONSHIPS

### Definition of Terms Used in the Cost Estimating Relationships (CER)

### Structure

The structure consists of the main load carrying members, the outer skin, adapters, thermal control louvres and shields, solar panels, supporting structure for various instruments, mechanisms, actuators for unmanned unpressurized spacecraft.

The propulsion module structure is principally the tank or pressure vessel for the propellants named.

The entry vehicle structure is the entire aero-shell structure including the heat shield, shingles and supporting structure.

### Propulsion

The propulsion module engines are liquid rockets and their associated turbo-pumps, valves, thrust vector controls and plumbing. The retrorockets are small solid rockets including the case with no thrust vector controls.

### Navigation and Guidance

The navigation and guidance system costs shown apply to inertial systems and radio command systems and consist of such items as the central computer and sequencer (CC and S), stellar navigation sensors, inertial platforms, accelerometers, and the command system and associated electronics.

### Stabilization and Control

This subsystem consists largely of the attitude control systems such as momentum storage, gravity gradient and cold gas systems and include such items as gas storage tanks, reaction jets, valves,

servo-valves, gyroscopes, momentum wheels, star and planet seekers, associated electronics and intercommecting cabling.

### Communications

Communication subsystems have been divided into two categories, tracking, telemetry and command (TT and C) and relay. Tracking, telemetry and command has been defined to include the beacons used to aid radar tracking, the transmission of all data from primary mission sensors, the telemetry of engineering data and the command receivers used to control the functions of the spacecraft. Relay communications include only those systems or portions of systems used to receive and re-transmit messages originating outside the spacecraft.

### Data Management

This subsystem consists of the data encoder, data storage and related cabling.

### Solar Cell Electrical Power

The silicon solar cell has been, and remains, the major source of electrical power for spacecraft. The appreciable cost of assembly and interconnection may be reduced by using the larger 2 x 2 cm. cells now being offered in addition to the standard 1 x 2 size. Still greater economy may be available when flexible, film arrays become available. While present systems all use the same photovoltaic mechanism, two mounting methods, body mounted and fixed and moveable paddles, are used, leading to different costs. Two separate curves are provided for Design/Development costs to reflect the differences between the paddle and body mounted approaches while one consolidated curve has been presented for first unit costs.

### Solar Dynamic Electrical Power

The principal system presently under development for the dynamic conversion of solar energy is the Brayton cycle using an inert gas to drive a turbo-generator. The design of a solar concentrator, heat receiver and storage unit continues to be a problem. No operational space system reference points are available for these systems. The Stirling cycle piston engine has shown some promise also.

### Fuel Cells Electrical Power

The present state of the art in fuel cells is defined by the status of the three major development programs:

- 1. An ion exchange membrane
- 2. A modified Bacon cell
- 3. A low temperature system using an asbestos matrix
  In all three the fuel is hydrogen and oxygen and the by-products
  are water and heat. The exhibits show typical costs for such systems.

### Isotope (RTG) Electrical Power

Isotope fueled thermoelectric power supplies are currently receiving most of the development funding for nuclear power systems.

Primarily two fuels are being considered, Plutonium 238 (half life 86 years) for long lifetime missions and Polonium 210 (half life 139 days) for short missions. Despite its high cost Plutonium 238 is considered for the longer duration missions. The difference in fuel cost is reflected in the exhibit for first unit cost where two curves are shown for the two fuels. Only one curve is shown in the Design/Development exhibit since the development costs are essentially independent of the particular isotope fuel used.

### Nuclear Reactor Electrical Power

The three basic nuclear reactor power conversion systems are thermoelectric, thermionic and turbogenerator. At the higher power levels where all the attention was once concentrated on the turbo generator systems, the thermionic systems are now being considered. At the lower power levels the thermoelectric systems are considered due to their apparent longer life and higher reliability due to the absence of moving parts.

### Batteries

The costs shown refer to silver-zinc batteries. The Design/
Development costs are insignificant and are therefore omitted. Since
these batteries have been produced for some time in large quantities
current costs reflect production efficiencies and no learning curve considerations will lower the costs appreciably.

### Descent System

The descent system refers to parachutes, attachment fitings, and containers only. The Design/Development costs vary considerably with the Mach number and altitude of the parachute deployment due principally to the cost of simulating the test conditions. The first unit costs are not sensitive to these test conditions within the ranges of values considered.

### Mission Sensors

The mission sensors (or experiments) considered here refer to TV systems, IR systems, UV telescopes, magnetometers, IR spectometers and other instruments to support particular experiments.







<5







stallod to anoilliM



Millions of Dollars

## EXHIBIT LV-7 LAUNCH VEHICLE PROPELLANT COST

| Type   |  |
|--------|--|
| lant   |  |
| Propel |  |
|        |  |

| 1 |          | ~       |
|---|----------|---------|
|   | Storable | LOX-LH2 |

LOX-RP-1

| 70       |
|----------|
| <b>C</b> |
| 2        |
| ା        |
|          |
| -        |
| +        |
| 201      |
| ्रा      |
| O        |
| -        |

| 8 |  |  |
|---|--|--|
| Š |  |  |
| Ö |  |  |
|   |  |  |



EXHIBIT LV-8 UNIT LEARNING CURVE



6





erallod to anoilliM

EXHIBIT 1.1A - PROPULSION MODULE STRUCTURE DESIGN/DEVELOPMENT COST



Thousands of Dollars Per Pound

EXHIBIT 1.18 - PROPULSION MODULE STRUCTURE FIRST UNIT COST



EXHIBIT 2A - PROPULSION MODULE ENGINE (LIQUID PROPELLANT)
DESIGN/DEVELOPMENT COST





EXHIBIT 2B - PROPULSION UNIT ENGINE FIRST UNIT COST



exhibit 3a - retro-propulsion systems design/development cost





EXHIBIT 4A - NAVIGATION AND GUIDANCE DESIGN/DEVELOPMENT COST VERSUS WEIGHT



no







stallod to enoilliM





15











Millions of Dollars Per kw

8



EXHIBIT 8.3A FUEL CELL ELECTRICAL POWER SUPPLY DESIGN /DEVELOPMENT COST



Millions of Dollars per Kilowett

FUEL CELL ELECTRICAL POWER SUPPLY FIRST UNIT COST EXHIBIT 8.3B









Millions of Dollars per kw



EXHIBIT 8.6A - BATTERY FIRST UNIT COST



azsilod lo anoilliM

Dollars per Pound (Re-entry vehicle weight)





FIRST UNIT COST PAYLOAD (EXPERIMENTS AND MISSION SENSORS)



Dollars, 10°





EXHIBIT 13 - INCREASE IN THE SPACECRAFT TPC DUE TO STERILIZATION



RE-ORDER No. 66-664



EXHIBIT 15 - MANAGEMENT IMPLEMENTATION MODE

1



**EXHIBIT 15A - SETD COST** 

## **EXHIBIT 16 - PROGRAM MANAGEMENT ALTERNATIVES**

|    | Schedule/Program Changes                                                                                                    | % Increase in STPC |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1. | Nominal Program                                                                                                             | 0                  |
| z. | Parallel Development (of alternate designs in high risks sub-systems from the start of Phase D)                             | 22.0               |
| 3. | Accelerated Development (crash development of three designs in each high risk sub-system from the quarter-point of Phase D) | 37.5               |
| 4. | Periodic Launch Rescheduled (to next launch opportunity at the mid-point of Phase D)                                        |                    |
|    | A. no cut-back in level of effort                                                                                           | 55.0               |
|    | B. a two-thirds funding cut-back with gradual build-up reaching nominal spending levels one year prior to launch            | 24.0               |

| <u>.</u> |
|----------|
|          |
|          |
| ABA S    |
| a        |
| 5        |
|          |
| 2        |
|          |
|          |
| C) a     |
| _        |
| -        |
|          |
| 0        |
|          |
| -        |
| Ü        |
| Ū        |
| V        |
| y<br>F   |
| CRAFT C  |
| ECRAFI O |
| CRAFT C  |

| PESIGN/NEVELOPMENT TEST COST OF TEST ARTICLES INTEGRAL  WIGHT  THE TOPNS  WISSION TIME (T) MONTHS TEST  WISSION TIME (T) MONTHS TEST  WISSION TIME (T) MONTHS TEST  WHISSION THE (T) MONTHS TEST  WHISSION TIME (T) MONTH | Ð                                     | •                          | 9               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-----------------|
| Systems integration—  Gyatems integration—  Management integration int |                                       |                            |                 |
| Spacecraft Module 1  Systems Integration -  ment Raff: © & CER 12A  Management  Rafe A  Conceptual Design  See A  Conceptual Design  See C  Ng = Number of High Risk Sub-System 13  F = ; Wc/Ws = ; N =  See Fit Opns  Mission Time (T) Months ; T =  Limpton Mode  Limpton Mode  Mission Time (T) Months ; T =  Limpton Mode  Myt Implementation Mode: 15  Space Fit Opns  Mission Time (T) Months ; T =  Limpton Mode  Myt Implementation Mode: 15  Space Fit Opns  Mission Time (T) Months ; T =  Limpton Mode  Myt Implementation Mode: 15  Space Fit Opns  Myt Implementation Myt Myt Implementation Myter | INTEGRATION                           | COST OF<br>FLIGHT ARTICLES | TOTAL           |
| Spacecraft Module 1  Spacecraft Module 1  Supposer Auto Space FLT OPUS  Supposer Auto Space FLT OPUS  See A  Conceptual Oesign  Mission Peculiah Equipment At Sub-Systems  F = ; Wc/Ws = ; N=  Nission Operations Thains; T=  t Fit Analysis  Mission Time (T) Months ; T=  Limpton Mode  Myst (mplementation Mode: 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 f CER 12A                           |                            | (G) • (P) • (S) |
| Gystems integration.  ment Ref: © ¢ CER 12A  gram Management  Mgt Mode/Tech M/P Ratio  see A  Conceptual Design  Adv Studies  Conceptual Design  Project Definition, System Dasign, ¢ Critical Hdw. Dev  Ng = Number of High Risk Sub-Systems  F = ; Wc/Ws = ; N =  Rission Pecular Equipment At GFOF ¢ DSN  Mission Operations Training; T =  L Fit Analysis  L Imple Mode  Mgt Implementation Mode: 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                     |                            |                 |
| Gystems integration—  ## Gold CER 12A  ## Gold CER 12A  ## Gold CER 12A  ## Gold CER 12A  ## Gold Mode/Tech M/P Ratio  ## Gonceptual Design  ## Gonceptual |                                       |                            |                 |
| 6 ystems integration— ment Rafi. (1) & CER 12A  GUPPORT AND SPACE FLT OPNS  91-3m Management  19-3m Mission Peculiah Equipment At 9FOF & DSN  19-3m Mission Time (T) Months; T=  19-3m Mat Implementation Mode:  15-4m Mat Implementation Mat Implementation Mode:  15-4m Mat Implementation Mat Implementat |                                       |                            |                 |
| Gystems Integration- ment Ref: ® ¢ CER 12A  SUPPORT AND SPACE FLT OPNS  GUPPORT AND SPACE FLT OPNS  Grant Ref: © ¢ CER 12A  Grant Ref: © ¢ CER 12A  Support AND SPACE FLT OPNS  And Studies  Conceptual Design  And Studies  And Stud |                                       | M.                         |                 |
| Support AND SPACE FLT OPNS  qram Management  The Mgt Mode/Tech M/P Ratio  15A  15A  15A  15A  15A  15A  15A  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                            |                 |
| Support AND SPACE FLT OPUS  State Management  Mat Mode/Tech M/P Ratio  Adv Studies  Adv Studies  Conceptual Design  Adv Studies  Conceptual Design  Project Definition, System Design; Critical Hdw. Dev  Ng = Number of High Risk Sub-Systems  Project Definition, System Design; Critical Hdw. Dev  Ng = Number of High Risk Sub-Systems  Project Definition, System Design; Critical Hdw. Dev  Nission Peculiar Equipment At SFOF & DSN  Mission Time (T) Months; T =  t FIt Analysis  Mission Time (T) Months; T =  L Implementation Mode:  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S/C TPC                               | <b>6</b>                   |                 |
| Mat Mode/Tech M/P Ratio  Adv Studies  Be A  Conceptual Design  Le B  Conceptual Design  Project Definition, System Design; Critical Hdw. Dev  NR = Number of High Risk Sub-Systems  F = ; Wc/Ws = ; N =  Equipment  Mission Peculian Equipment At SFOF & DSN  Mission Time (T) Months; T =  Fit Analysis  Mission Time (T) Months; T =  Implen Mode  Mgt Implementation Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CERP.                                 | OPERATION                  | COST            |
| Mgt Mode/Tech M/P Ratio  Le A  Adv Studies  Conceptual Design  Equipment  Equipment  Equipment  Mission Operations Training; T=  Mission Time (T) Months; T=  Mission Time (T) Months; T=  Mission Mission Mode:  Implement  Mgt Implementation Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                     | 0.05 @                     |                 |
| Conceptual Design  Conceptual De | 154                                   | &<br><b>⊚</b>              |                 |
| Conceptual Design  Project Definition, System Design, & Critical Hdw. Dex  Development  Ng = = Number of High Risk Sub-Systems  F = ; Wc/Ws = ; N = 13  Equipment  Mission Peculiar Equipment At SFOF & DSN  Mission Operations Thaining; T = Mission Time (T) Months; T = -  Fit Analysis  Myt Implementation Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                     | 0.01                       |                 |
| Development  Ng = = Number of High Risk Sub-Systems  Ng = = Number of High Risk Sub-Systems  Ng = = Number of High Risk Sub-Systems  F = ; Wc/Ws = ; N = 13  Mission Peculiar Equipment At SFOF & DSN 14  Equipment  Mission Operations Thaining; T =    Mission Time (T) Months ; T =    Mission Time (T) Months ; T =    Imple Mode  Mgt Implementation Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 0.01 @                     |                 |
| Development    Ng = = Number of High Risk Sub-Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 0.05                       |                 |
| Equipment  Equipment  Equipment  Equipment  Mission Operations Tidining; T=  Reflections  Mission Time (T) Months; T=  Fit Analysis  Myt Implementation Mode:  13  14  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.05 @ (1+JNR)             |                 |
| Equipment  Equipment  Equipment  Mission Operations Training; T=  Mission Time (T) Months; T=  Fit Analysis  Mission Time (T) Months; T=  Mission Time (T) Months; T=  Mission Time (T) Months; T=  Imple Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 100 @ × N/4                |                 |
| Equipment . Mission Operations Training; T=  Refle Opns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | u u                        |                 |
| Fit Opns  Fit Analysis  Mission Time (T) Months; T=  Mission Time (T) Months; T=  Imple Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0.60x1                              | 0.60x10 x (T+3)+0.2 (MPEC) |                 |
| Flt Analysis Mission Time (T) Months ; T=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0.20                                | 0.20x106(T+3)              |                 |
| Implen Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | 0.40×106 (T+3)             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b>                              | Κ <sub>2</sub>             |                 |
| Schedule / Program Chg   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                     | /100 @                     |                 |
| Launch Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                            |                 |

## SPACECRAFT COST

PROGRAM \_\_\_\_\_

| COST<br>CATEGORIES                | DESCRIPTION | QUANTIFYING<br>PARMETER | PARAMETER<br>INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REF  | DESIGN/<br>DEV'L'PT<br>COST | REF<br>CER | PARAMETER<br>OUTPUT<br>DOLLARS/— | FIRST<br>UNIT<br>COST | NO.<br>TEST<br>ARTICLES | COST OF<br>TEST<br>ARTICLES | FLIGHT | COST OF<br>FLIGHT<br>ARTICLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOTAL<br>HROW<br>COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|------------|----------------------------------|-----------------------|-------------------------|-----------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure                         |             | Weight (165)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IA   |                             | 18         |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propulsion<br>Module<br>Structure |             | Weight (155)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1A |                             | 1.18       |                                  |                       |                         |                             | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entry<br>Structure                |             | Weight (1bs)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IA   |                             | 18         |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propulsion                        | Liquid      | Thrust (165)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ZA   |                             | 28         |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Retro-Propulsion                  | Solid       | Weight (155)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3A   |                             | 38         |                                  | ·                     |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Navigation<br>and<br>Guidance     |             | Weight (165)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4A   |                             | 48         | 1                                |                       |                         |                             | ¥      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stabilization and Control         |             | Weight (1bs)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5A   | ·                           | 5 <b>8</b> |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Communications                    |             | Weight (165)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6A   |                             | 68         |                                  |                       | :                       |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data<br>Management                | ,           | Weight (lbs)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7A   | ·                           | 78         |                                  |                       | ŕ                       |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Electrical<br>Power               |             | Kilowatts               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8A   |                             | 88         |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Descent System                    |             | Entry Wt. (165)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9A   |                             | 98         |                                  |                       |                         |                             | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experiments or Mission Sensors    |             | Weight (165)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IOA  |                             | 108        |                                  | -                     |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AGE                               |             | 5/C Dry Wt. (Ibs)       | Antonio in territori di primi di succioni di primi di pri | 11A  |                             |            |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tooling and Sp.<br>Test Equipment |             | 5/C Dry Wt. (165)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11A  |                             |            |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOTALS                            |             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΨΣ   |                             | <u>()</u>  |                                  |                       |                         |                             | 2      | and the second s | The second secon |
| Systems<br>Integration            |             |                         | 1 +(2) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12A  |                             |            |                                  |                       |                         |                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## LAUNCH VEHICLE COST

|                                 |                                 |                                  |           |                                       |                                     | . ,                      |                                 |          |                |                   |                    |                              |                 |                 |
|---------------------------------|---------------------------------|----------------------------------|-----------|---------------------------------------|-------------------------------------|--------------------------|---------------------------------|----------|----------------|-------------------|--------------------|------------------------------|-----------------|-----------------|
| STAGE                           | 30                              | QUANTIFYING PARA<br>PARAMETER IN | PARAMETER | SE<br>CER.                            | FIRST UNIT<br>COST<br>(DOLLARS/LBS) | STRUCTURE<br>(WT IN LBS) | FIRST UNIT<br>COST<br>(00LLARS) | LEARNING | ITEM<br>COSTED | 8 0<br>m m<br>n 8 | LEARNING<br>FACTOR | COST OF<br>ITEM<br>(DOLLARS) | NUMBER<br>ITEMS | COST<br>(POLLAR |
| Structure                       | 9                               | Stage Propel-<br>lant Wt. (ibs)  |           | Ex<br>LV-1                            |                                     |                          |                                 |          |                | Ε×.<br>-8-<br>-8- |                    |                              |                 |                 |
| Propulsion                      | C                               | Engine<br>Thrust (105)           | •         | Ex LV-2                               |                                     |                          |                                 |          |                | Z<br>Z<br>Z       |                    |                              |                 |                 |
| Guidance and<br>Control         | and                             | Weight (165)                     |           | Ex.<br>LV-3                           |                                     |                          |                                 |          |                | EX-09             |                    |                              |                 | G.              |
| Transportation Air Ship or Rail | Air []                          | Stage Dry<br>Weight (15s)        |           | £x.<br>LV-4                           |                                     |                          |                                 |          |                |                   |                    |                              |                 |                 |
| Acceptance<br>Test              | <b>0</b>                        | Stage Gross<br>Weight (165)      |           | Ex.<br>LV-5                           |                                     |                          |                                 |          |                |                   |                    |                              |                 |                 |
| Launch<br>Services              | w                               | L.V. Gross<br>Weight (165)       |           | Ex.<br>LV-6                           |                                     |                          |                                 |          |                |                   |                    |                              |                 |                 |
| Propellants                     | nte                             | Propellant<br>Type               |           | Ex7                                   |                                     |                          |                                 |          |                | 1                 |                    |                              |                 |                 |
|                                 |                                 |                                  |           |                                       |                                     |                          |                                 |          |                |                   |                    |                              | TOTAL           |                 |
| Engin                           | Engine Type                     |                                  |           |                                       |                                     |                          |                                 |          |                |                   |                    |                              |                 |                 |
| Engin<br>(ea) (                 | Engine Dry Weight<br>(ea) (lbs) | veight                           |           | · · · · · · · · · · · · · · · · · · · |                                     |                          |                                 |          |                |                   |                    |                              |                 |                 |
| Stage                           | Stage Thrust (165)              | 1 (165)                          |           | •                                     |                                     |                          |                                 |          |                |                   |                    |                              |                 | · .             |